a CEA/CAD/DRN/DER/SPRC Bât 230 CE CADARACHE - FRANCE b IATE OBNINSK - RUSSIA

BUT : Current cross-sections do not satisfysafety design parameter accuracy requirements

For Example

- ♦ +/- 600 pcm on K_{eff} for PWR-UO₂ lattice
- ♦ +/- 1000 pcm on K_{eff} for PWR-MOx lattice

Due to Cross-Sections Uncertainties

- Physicists built <u>Specific Integral Experiments</u> (fundamental or mock-up types) to measure Neutronic Parameters with improved accuracies: for example +/- 300 pcm (1σ) on K_{eff} or +/- 1% (1σ) on fission rate distributions
- ⇒A Statistical Approach is used to combine informations coming from these integral experiments and those coming from microscopic cross-section measurements (traditionnaly used for fast reac-tors libraries but not for THERMAL reactors)

Maximum Likelyhood Principle and the BAYES Theorem

Try to use this statistical technique to qualify thermal cross-section libraries based on the JEF2.2 basic nuclear data set.

- ●235U, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ¹⁶O
- ●Natural Zr, ⁵⁶Fe, ⁵⁸Ni, ⁵²Cr, ²⁷Al
- ¹⁰B, Natural Gd
- ●12C, H₂O
- Capture, Fission, v, elastic and inelastic

> Data Needed to apply this statistical approach

- Measurement of Fundamental Neutronic Parameters
- Variance/covariance Matrix relative to these Experiments
- Sensitivity Coefficients Matrix of the integral parameters to the cross-sections.
- Variance/covariance matrix relative to the cross-sections

Analyzed Integral Experiments

- 4 International Experimental Benchmarks
 - TRX-1; TRX-2; ORNL and PNL spheres
- 10 UO, Experiments
 - EPICURE-1; CAMELEON; DIMPLE; VVER and BNL Lattices
- 9 UPuO, Experiments
 - ERASME; JAERI; EPICURE-2
- 1 Spent fuel analysis
 - SHERWOOD

♦ 23 K_{eff}

4 27 Spectral indices

Results of the Adjustments

- A Priori Dispersion Façtor $\chi^2 = 5.00$
- A Posteriori Dispersion Factor $\chi^2 = 0.95$

Consistent with the statistical enhancement factor, which must be :

$$1 - \sqrt{\frac{2}{N}} \le \chi^2 \le 1 + \sqrt{\frac{2}{N}}$$

Synthesis of the adjutments (1)

4 239 Pu

• No significant trend except for a slight decrease (1.5%) of the Capture in the resonance range

№ ²⁴⁰Pu

• <u>Large decrease</u> of the fission (11%) and <u>slight decrease</u> of Capture (3.5%) in the first resonance at 1.054 eV.

№ 241 Pu

• Slight decrease of the fission (3%) and increase (2%) of capture above 0.5 eV.

№ 242 Pu

● Large decrease (5%) of the capture in the first resonance at 2.67 eV

₩238U

<u>Large decrease</u> of the fission near the threshold (weighting flux problems)

Synthesis of the adjutments (2)

♦ ²³⁵U (JEF2.2 and ENDF-BVI)

- Fission very wellknown but very large increase (up to 12 % !) of the capture cross-section in the resonance energy range.
- ⇒Self-shieding calculations in the APOLLO-2 code (resonance overlapping effect for example)
- \Rightarrow Evaluation : Mean capture width of around $\Gamma\gamma$ = 33 meV was used where the usually accepted value is $\Gamma\gamma$ = 37 +/- 2 meV. The discrepancy is about the same than the recommanded adjustment

⇒ NEW EVALUATION ?