IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_Cf252.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Non-threshold reactions measured in fast spectra such as the 252Cf(sf) and 235U(nth,f) spectrum tend to have their spectrum averaged cross section dominated by scattering contributions and ‘room-return’ neutrons. Experiments should be designed to minimize these contributions and maximize the reaction rate from the primary source. For new experiments best estimates must be provided by detailed Monte Carlo calculation of the spectrum realized in the experiment and the Monte Carlo model must be made available to IRDFF to facilitate validation of new proposals for the cross section. In all cases it is advised to publish both the fully corrected SACS and the measured reaction rates of the primary reaction and the monitor reactions used for normalization and validation of the model. The measured reaction rates must be provided with a full covariance matrix.
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_Cf252.pdf
Request ID | 47 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
90-TH-232 | (n,f) SIG,SPA | 252Cf(sf) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_Cf252.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Non-threshold reactions measured in fast spectra such as the 252Cf(sf) and 235U(nth,f) spectrum tend to have their spectrum averaged cross section dominated by scattering contributions and ‘room-return’ neutrons. Experiments should be designed to minimize these contributions and maximize the reaction rate from the primary source. For new experiments best estimates must be provided by detailed Monte Carlo calculation of the spectrum realized in the experiment and the Monte Carlo model must be made available to IRDFF to facilitate validation of new proposals for the cross section. In all cases it is advised to publish both the fully corrected SACS and the measured reaction rates of the primary reaction and the monitor reactions used for normalization and validation of the model. The measured reaction rates must be provided with a full covariance matrix.
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_Cf252.pdf
Request ID | 48 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
30-ZN-67 | (n,p) SIG,SPA | 252Cf(sf) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, fusion, medical | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:
Request ID | 49 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
42-MO-92 | (n,p)Nb-92m SIG,SPA | 252Cf(sf) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_Cf252.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_Cf252.pdf
Request ID | 50 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
28-NI-60 | (n,p) SIG,SPA | 252Cf(sf) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_Cf252.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Experiments
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_Cf252.pdf
Request ID | 51 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
26-FE-54 | (n,a) SIG,SPA | 252Cf(sf) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes, especially for improvement of the prompt fission neutron spectrum at high energy. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Experiments
Theory/Evaluation
Validation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 52 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
33-AS-75 | (n,2n) SIG,SPA | 252Cf(sf) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 53 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
39-Y-89 | (n,2n) SIG,SPA | 252Cf(sf) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Experiments
Theory/Evaluation
Validation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 54 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
25-MN-55 | (n,g) SIG,SPA | 235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_U235.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Non-threshold reactions measured in fast spectra such as the 252Cf(sf) and 235U(nth,f) spectrum tend to have their spectrum averaged cross section dominated by scattering contributions and ‘room-return’ neutrons. Experiments should be designed to minimize these contributions and maximize the reaction rate from the primary source. For new experiments best estimates must be provided by detailed Monte Carlo calculation of the spectrum realized in the experiment and the Monte Carlo model must be made available to IRDFF to facilitate validation of new proposals for the cross section. In all cases it is advised to publish both the fully corrected SACS and the measured reaction rates of the primary reaction and the monitor reactions used for normalization and validation of the model. The measured reaction rates must be provided with a full covariance matrix.
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf
Request ID | 55 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
92-U-238 | (n,g) SIG,SPA | 235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_U235.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Non-threshold reactions measured in fast spectra such as the 252Cf(sf) and 235U(nth,f) spectrum tend to have their spectrum averaged cross section dominated by scattering contributions and ‘room-return’ neutrons. Experiments should be designed to minimize these contributions and maximize the reaction rate from the primary source. For new experiments best estimates must be provided by detailed Monte Carlo calculation of the spectrum realized in the experiment and the Monte Carlo model must be made available to IRDFF to facilitate validation of new proposals for the cross section. In all cases it is advised to publish both the fully corrected SACS and the measured reaction rates of the primary reaction and the monitor reactions used for normalization and validation of the model. The measured reaction rates must be provided with a full covariance matrix.
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf
Request ID | 56 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
29-CU-63 | (n,g) SIG,SPA | 235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_U235.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Non-threshold reactions measured in fast spectra such as the 252Cf(sf) and 235U(nth,f) spectrum tend to have their spectrum averaged cross section dominated by scattering contributions and ‘room-return’ neutrons. Experiments should be designed to minimize these contributions and maximize the reaction rate from the primary source. For new experiments best estimates must be provided by detailed Monte Carlo calculation of the spectrum realized in the experiment and the Monte Carlo model must be made available to IRDFF to facilitate validation of new proposals for the cross section. In all cases it is advised to publish both the fully corrected SACS and the measured reaction rates of the primary reaction and the monitor reactions used for normalization and validation of the model. The measured reaction rates must be provided with a full covariance matrix.
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf
Request ID | 57 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
57-LA-139 | (n,g) SIG,SPA | 235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_U235.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Non-threshold reactions measured in fast spectra such as the 252Cf(sf) and 235U(nth,f) spectrum tend to have their spectrum averaged cross section dominated by scattering contributions and ‘room-return’ neutrons. Experiments should be designed to minimize these contributions and maximize the reaction rate from the primary source. For new experiments best estimates must be provided by detailed Monte Carlo calculation of the spectrum realized in the experiment and the Monte Carlo model must be made available to IRDFF to facilitate validation of new proposals for the cross section. In all cases it is advised to publish both the fully corrected SACS and the measured reaction rates of the primary reaction and the monitor reactions used for normalization and validation of the model. The measured reaction rates must be provided with a full covariance matrix.
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf
Request ID | 58 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
45-RH-103 | (n,inl)Rh-103m SIG,SPA | 235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_U235.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Experiments
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf
Request ID | 59 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
69-TM-169 | (n,2n) SIG,SPA | 235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See CE_U235_and_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:CE_U235_and_HighThreshold.pdf
Request ID | 60 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
29-CU-65 | (n,2n) SIG,SPA | 235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 61 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
25-MN-55 | (n,2n) SIG,SPA | 235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See SPA_CE_U235.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Experiments
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf
Request ID | 62 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
28-NI-58 | (n,2n) SIG,SPA | 235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See SPA_CE_U235.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf
Request ID | 63 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
95-AM-241 | (n,f) SIG,SPA | 252Cf(sf)-235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Non-threshold reactions measured in fast spectra such as the 252Cf(sf) and 235U(nth,f) spectrum tend to have their spectrum averaged cross section dominated by scattering contributions and ‘room-return’ neutrons. Experiments should be designed to minimize these contributions and maximize the reaction rate from the primary source. For new experiments best estimates must be provided by detailed Monte Carlo calculation of the spectrum realized in the experiment and the Monte Carlo model must be made available to IRDFF to facilitate validation of new proposals for the cross section. In all cases it is advised to publish both the fully corrected SACS and the measured reaction rates of the primary reaction and the monitor reactions used for normalization and validation of the model. The measured reaction rates must be provided with a full covariance matrix.
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:
Request ID | 64 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
15-P-31 | (n,p) SIG,SPA | 252Cf(sf)-235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
Measurements of the 252Cf(sf)-spectrum-averaged cross section are missing for validation purposes. New measurements of the 235U(n,f)-spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_Cf252U235.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_Cf252U235.pdf
Request ID | 65 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
92-U-238 | (n,2n) SIG,SPA | 252Cf(sf)-235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy and for improvement of the prompt fission neutron spectrum at high energy. See CE_Cf252U235_and_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:CE_Cf252U235_and_HighThreshold.pdf
Request ID | 66 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
49-IN-115 | (n,2n)In-114m SIG,SPA | 252Cf(sf)-235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 67 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
59-PR-141 | (n,2n) SIG,SPA | 252Cf(sf)-235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 68 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
24-CR-52 | (n,2n) SIG,SPA | 252Cf(sf)-235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 69 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
11-NA-23 | (n,2n) SIG,SPA | 252Cf(sf)-235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Experiments
- M. Schulc, M. Kostal, et al., Validation of differential cross sections by means of 252Cf spectral averaged cross sections, Applied Radiation and Isotopes 132 (2018) 29
- M. Schulc, et al., Investigation of 127I(n,2n)126I and 23Na(n,2n)22Na reactions using 252Cf neutron source, ASME J of Nuclear Rad Sci. 5 (2019) 030918
- M. Kostal, et al., A reference neutron field for measurement of spectrum averaged cross sections, Annals of Nuclear Energy 140 (2020) 107119
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 70 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
13-AL-27 | (n,2n) SIG,SPA | 252Cf(sf)-235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 71 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
22-TI-46 | (n,2n) SIG,SPA | 252Cf(sf)-235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are requested for validation purposes in 235U(n,f) neutron fields, for solving C/E discrepancy in 252Cf(sf) fields, and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See CE_Cf252U235_and_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:CE_Cf252U235_and_HighThreshold.pdf
Request ID | 72 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
50-SN-117 | (n,inl)Sn-117m SIG,SPA | 252Cf(sf)-235U(n,f) | | 2-5 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | Fast fission, D-T fusion | 06-OCT-17 | 06-OCT-17 | |
Requester: Mr Christophe DESTOUCHES at CAD-DER, FR
Email: christophe.destouches@cea.fr
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
The Sn-117(n,n') reaction has by far the lowest reaction threshold and would probe the energy region in the 100 keV range [Destouches2016,2017]. The cross section database is poor. A new evaluation of the cross section is needed, as well as integral measurements in well-characterised neutron fields.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., Proposals for new measurements for IRDFF community and HPRL, September 2017.
- [Destouches2016] C. Destouches, EPJ Conferences 111, 01002 (2016).
- [Destouches2017] C. Destouches, et al., The 117Sn(n,n')117mSn reaction: a suitable candidate to investigate the epithermal neutron spectrum by reactor dosimetry techniques, Int. Conf. on Nuclear Energy for New Europe (NENE), Bled, Slovenia, September 11-14, 2017 (NENE 2017 Proceedings).
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:Simakov2017.pdf
Additional file attached:Sn117(n,n)Sn117m.pdf
Request ID | 73 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
22-TI-47 | (n,np) SIG,SPA | 252Cf(sf)-235U(n,f) | | 5-10 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion, high-energy | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
5%-10%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:
Request ID | 74 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
22-TI-48 | (n,np) SIG,SPA | 252Cf(sf)-235U(n,f) | | 5-10 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion, high-energy | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
5%-10%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:
Request ID | 75 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
22-TI-49 | (n,np) SIG,SPA | 252Cf(sf)-235U(n,f) | | 5-10 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | D-T fusion, high-energy | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
5%-10%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:
Request ID | 76 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
26-FE-54 | (n,2n) SIG,SPA | 252Cf(sf)-235U(n,f) | | 5-10 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | High-energy | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
5%-10%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 77 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
69-TM-169 | (n,3n) SIG,SPA | 252Cf(sf)-235U(n,f) | | 5-10 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | High-energy | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
5%-10%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 78 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
83-BI-209 | (n,3n) SIG,SPA | 252Cf(sf)-235U(n,f) | | 5-10 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | High-energy | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
5%-10%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Experiments
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 79 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
27-CO-59 | (n,3n) SIG,SPA | 252Cf(sf)-235U(n,f) | | 5-10 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | High-energy | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
5%-10%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 104 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
9-F-19 | (n,2n) SIG,SPA | 239Pu(n,f) | | 3 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Fission | Dosimetry | 26-MAR-18 | 06-JUN-18 | |
Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org
Project (context):
Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].
Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections
Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].
References
- D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
- R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)
Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).
Review comment:
Entry Status:
Work in progress (as of SG-C review of June 2019)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:
Additional file attached:
Request ID | 105 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
25-MN-55 | (n,2n) SIG,SPA | 239Pu(n,f) | | 3 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Fission | Dosimetry | 26-MAR-18 | 06-JUN-18 | |
Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org
Project (context):
Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].
Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections
Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].
References
- D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
- R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)
Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).
Review comment:
Entry Status:
Work in progress (as of SG-C review of June 2019)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:
Additional file attached:
Request ID | 106 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
27-CO-59 | (n,2n) SIG,SPA | 239Pu(n,f) | | 3 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Fission | Dosimetry | 26-MAR-18 | 06-JUN-18 | |
Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org
Project (context):
Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].
Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections
Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].
References
- D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
- R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)
Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).
Review comment:
Entry Status:
Work in progress (as of SG-C review of June 2019)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:
Additional file attached:
Request ID | 107 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
28-NI-58 | (n,2n) SIG,SPA | 239Pu(n,f) | | 3 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Fission | Dosimetry | 26-MAR-18 | 06-JUN-18 | |
Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org
Project (context):
Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].
Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections
Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].
References
- D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
- R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)
Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).
Review comment:
Entry Status:
Work in progress (as of SG-C review of June 2019)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:
Additional file attached:
Request ID | 108 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
33-AS-75 | (n,2n) SIG,SPA | 239Pu(n,f) | | 3 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Fission | Dosimetry | 26-MAR-18 | 06-JUN-18 | |
Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org
Project (context):
Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].
Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections
Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].
References
- D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
- R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)
Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).
Review comment:
Entry Status:
Work in progress (as of SG-C review of June 2019)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:
Additional file attached:
Request ID | 109 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
39-Y-89 | (n,2n) SIG,SPA | 239Pu(n,f) | | 3 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Fission | Dosimetry | 26-MAR-18 | 06-JUN-18 | |
Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org
Project (context):
Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].
Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections
Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].
References
- D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
- R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)
Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).
Review comment:
Entry Status:
Work in progress (as of SG-C review of June 2019)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:
Additional file attached:
Request ID | 110 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
40-ZR-90 | (n,2n) SIG,SPA | 239Pu(n,f) | | 3 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Fission | Dosimetry | 26-MAR-18 | 06-JUN-18 | |
Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org
Project (context):
Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].
Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections
Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].
References
- D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
- R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)
Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).
Review comment:
Entry Status:
Work in progress (as of SG-C review of June 2019)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:
Additional file attached:
Request ID | 111 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
41-NB-93 | (n,2n)Nb-92m SIG,SPA | 239Pu(n,f) | | 3 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Fission | Dosimetry | 26-MAR-18 | 06-JUN-18 | |
Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org
Project (context):
Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].
Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections
Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].
References
- D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
- R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)
Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).
Review comment:
Entry Status:
Work in progress (as of SG-C review of June 2019)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:
Additional file attached:
Request ID | 112 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
53-I-127 | (n,2n) SIG,SPA | 239Pu(n,f) | | 3 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Fission | Dosimetry | 26-MAR-18 | 06-JUN-18 | |
Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org
Project (context):
Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].
Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections
Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].
References
- D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
- R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)
Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).
Review comment:
Entry Status:
Work in progress (as of SG-C review of June 2019)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:
Additional file attached:
Request ID | 113 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
69-TM-169 | (n,2n) SIG,SPA | 239Pu(n,f) | | 3 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Fission | Dosimetry | 26-MAR-18 | 06-JUN-18 | |
Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org
Project (context):
Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].
Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections
Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].
References
- D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
- R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)
Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).
Review comment:
Entry Status:
Work in progress (as of SG-C review of June 2019)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:
Additional file attached: