IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
2%-5%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.
Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
- [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Experiments
Theory/Evaluation
Validation
Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf
Request ID | 82 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
39-Y-89 | (n,p) SIG | 15 MeV-100 MeV | | 5-10 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | High-energy | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
5%-10%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:Simakov2017.pdf
Additional file attached:Y89(n,xn).pdf
Request ID | 83 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
39-Y-89 | (n,xn) x=2-4 SIG | 15MeV/Thr.-100 MeV | | 5-10 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Dosimetry | High-energy | 06-OCT-17 | 06-OCT-17 | |
Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu
Project (context): IRDFF project
Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].
Accuracy:
5%-10%
Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.
References
- [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
http://www-nds.iaea.org/IRDFFtest/.
- [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
Review comment:
Entry Status:
Work in progress (as of SG-C review of May 2018)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Experiments
Theory/Evaluation
Additional file attached:Simakov2017.pdf
Additional file attached:Y89(n,xn).pdf
Request ID | 109 |
Type of the request | Special Purpose Quantity |
Target | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty | Covariance |
39-Y-89 | (n,2n) SIG,SPA | 239Pu(n,f) | | 3 | Y |
Field | Subfield | Date Request created | Date Request accepted | Ongoing action |
Fission | Dosimetry | 26-MAR-18 | 06-JUN-18 | |
Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org
Project (context):
Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].
Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections
Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].
References
- D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
- R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)
Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).
Review comment:
Entry Status:
Work in progress (as of SG-C review of June 2019)
Main references:
Please report any missing information to hprlinfo@oecd-nea.org
Additional file attached:
Additional file attached: