Request ID1 Type of the request General request
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 14-SI-28 (n,np) SIG  Threshold-20 MeV 4 pi 20 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fusion Material Recycling 21-SEP-05 23-MAR-07 

Requester: Dr Edward T. CHENG at GAT, USA
Email:

Project (context): Structural material for fusion power reactors

Impact:
SiC is a potential very low activation structural material for a fusion power reactor. Al-27 produced from neutron irradiation of Si generates Al-26 via the Al-27(n,2n) reaction. Al-26 is a long-lived radionuclide with a half life of 720,000 years emitting high energy gammas. The concentration of Al-26 in SiC determines whether the decommissioned fusion blanket qualifies for recycling.

Accuracy:
The request for 20% accuracy is based on what seemed feasible for the nuclear data community to achieve and probably would be sufficient for applications as well. It is not based on any sensitivity calculations.

Justification document:
The estimates consider waste generated by four full power years at 5 MW/m2 neutron wall load and are based on a particular scenario for waste handling using evaluations for Si-28(n,x)Al-27 provided by ENDF/B-VI and ADL-3 which are adopted in FENDL/A-2.0. Estimated concentration limits for Si are a factor 10 higher than earlier estimates, so that SiC would qualify as a truly low-activation material. The request asks for experimental data to validate these estimates and a subsequent re-evaluation. No direct experimental data exist.
Reference 1: E.T.Cheng, Jour. Nucl. Mat.,258-263(1998)1767
Reference 2: E.T. Cheng, Proc. of the Int. Conf. on Nuclear Data for Science and Technology, eds. G. Reffo, A. Ventura and C. Grandi, SIF, Bologna, 1158 (1997)

Comment from requester:
Two methods to measure this reaction cross section have been suggested by Herbert Vonach and others. These include (1) Measurement of Na24 activity with high-purity Si samples and intense neutron sources, and (2) Measurement of total production in Si and then subtracting the well known (n,p) cross sections to obtain the (n,n'p) values. An attempt to measure this cross section data at 14 MeV a few years ago failed due to the contamination of the Si samples with the impurity Al. The request for 20% accuracy is based on what seemed feasible for the nuclear data community to achieve and probably would be sufficient for applications as well. It is not based on any sensitivity calculations.

Review comment:

The accuracy is not known. Estimates from present and earlier evaluations differ by a factor of ten.

The request appears to imply application to post-ITER fusion reactors in view of the high neutron dose required to generate relevant quantities of Al-26. Reference [1] refers primarily to the Si-28(n,np) reaction, whereas the production of Al-27 from Si-28 is important. This therefore also implies the (n,d) reaction since the respective thresholds are 12 and 9.7 MeV. Quantitative information is supplied that seems to suggest directly that 20% accuracy is of interest to the application. Stoichiometric SiC has 70 wt% of Si, whereas the scenario assumed for the estimates of Ref. [1] results in an upper limit of 85 wt% Si for recycling. This request qualifies as a General request primarily since the project end time is unspecified.

Entry Status:
Completed (as of SG-C review of May 2018) - Development in state-of-the-art nuclear reaction codes such as TALYS and EMPIRE allowed to fulfil this request. The uncertainties in the main evaluated files (ENDF/B-VIII.0, JEFF-3.3, TENDL-2015) are all consistent above the threshold reaction and vary within a 15-25% band between 13 MeV and 20 MeV.

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Additional file attached:
Additional file attached:



Request ID6 Type of the request General request
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 92-U-233 (n,g) SIG  10 keV-1.0 MeV  9 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission Fast reactors 28-APR-06 13-MAR-07 Y

Requester: Dr Gilles NOGUERE at CAD-DER, FR
Email: gilles.noguere@cea.fr

Project (context): JEFF

Impact:
U-233 is the main isotope of relevance to the Th/U fuel cycle. Its most important cross section is the fission cross section. The direct impact of the U-233 capture cross section is rather limited on most reactor related parameters but breeding. However, reliable capture data are needed for the evaluation work.

Accuracy:
The target accuracy on the capture cross section in the unresolved resonance range should be better than 10%

Justification document:
Interpretations of the Profil and Profil-2 experiments [1] performed in the fast reactor Phenix of the CEA Marcoule have shown an underestimation of 9% the U-233 effective capture cross section available in the latest version of the European library JEFF-3.1. The accuracy of the capture data available in EXFOR is not suitable to perform a new evaluation.
References:
[1] J. Tommasi, E. Dupont and P. Marimbeau., "Analysis of Sample Irradiation Experiments in Phénix for JEFF-3.0 Nuclear Data Validation", Nucl. Sci. Eng. 154 (2006) 119-133
[2] J.C.Hopkins and B.C.Diven, "Neutron capture to fission ratios in U-233, U-235, Pu-239", Nucl. Sci. Eng. 12 (1962)169
[3] G. Noguere, E. Dupont, J. Tommasi and D. Bernard, "Nuclear data needs for actinides by comparison with post irradiation experiments", Technical note CEA Cadarache, NT-SPRC/LEPH-05/204 (2005) (see below).

Comment from requester:

Review comment:

Owing to the difficulty in measuring the U-233(n,g) cross section, new evaluation has to take into account the Profil results [3]. Owing to the integral trend given by the interpretation of PROFIL, the final accuracy on the effective capture cross section should be lower than 9%.

Adrien Bidaud, CENBG, Bordeaux, independently investigated the sensitivity of the regeneration of U-233 to various cross sections. Sensitivities were evaluated considering a molten salt reactor under the constraints of criticality and isotopic equilibrium. Large sensitivities are observed for the capture cross section and for nu-bar. He concludes that "Any effort done to confirm the neutron yields and the capture cross section or at least to confirm their uncertainty would be very much appreciated." The energy range of interest is below that of the current request.

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

  • C. Carrapico, E. Berthoumieux, et al., Neutron induced capture and fission discrimination using calorimetric shape decomposition, NIM A 704 (2013) 60-67, EXFOR 23071
  • M. Bacak, et al., A compact multi-plate fission chamber for the simultaneous measurement of 233U capture and fission cross-sections, ND2016, EPJ Conferences 146 (2017) 03027

Theory/Evaluation

  • A. Trkov, et al., Evaluated nuclear data for nuclides within the Thorium-Uranium fuel cycle, IAEA Report STI/PUB/1435, 2010

Additional file attached:
Additional file attached:NT-Profil.pdf



Request ID7 Type of the request General request
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 26-FE-56 (n,xn) SIG,DDX  7 MeV-20 MeV 1MeV-20MeV 30 
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission,ADS Shielding, Medical, SNS 13-JUL-06 16-APR-07 

Requester: Prof. Arjan KONING at NRGPETTEN, NED
Email:

Project (context): JEFF, Model calculations

Impact:
New double differential experimental data for the Fe(n,xn) reaction will allow a crucial test of the pre-equilibrium models underlying neutron transport libraries for spallation neutron sources. They will thereby enhance the confidence in neutron transport calculations for spallation neutron sources such as envisioned for accelerator driven systems.

Accuracy:
30% for the double-differential spectra

Justification document:
A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential, A.J. Koning and M.C. Duijvestijn, Nucl. Phys. A744, 15 (2004).

Comment from requester:
There are hundreds of (p,xp) and (p,xn) spectra in the 20-200 MeV range available, several (n,xp) spectra, but there are basically no double-differential (n,xn) spectra available. The presence of such data would heavily constrain the pre-equilibrium model parameters and thereby result in a much better prediction of neutron-induced spectra in the entire 50-200 MeV range. Since high-energy spectra are rather structureless the choice of target is less essential.

Review comment:

Entry Status:
Completed (as of SG-C review of May 2018) - The experimental program performed at Uppsala [Sagrado:2011] combined with improvements in nuclear reaction models allow modern evaluations to address this request, see e.g. [Herman:2018].

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

  • I.C. Sagrado Garcia et al., Neutron production in neutron-induced reactions at 96 MeV on 56Fe and 208Pb, PRC 84 (2011) 044619

Theory/Evaluation

  • M. Herman et al., Evaluation of Neutron Reactions on Iron Isotopes for CIELO and ENDF/B-VIII.0, NDS 148 (2018) 214

Additional file attached:
Additional file attached:



Request ID9 Type of the request General request
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 92-U-233 (n,g) nubar,SIG  Thermal-10 keV  .5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission Molten Salt Reactors 19-APR-07 19-APR-07 Y

Requester: Dr Adrien BIDAUD at LPSC, FR
Email: bidaud@lpsc.in2p3.fr

Project (context): JEFF

Impact:
U-233 is the main isotope of relevance to the Th/U fuel cycle. The present request concerns the viability of Th/U fueled molten salt reactors which requires that the amount of U-233 generated equals that which is destroyed.

Accuracy:
0.5% in nubar, 5% for the (n,g) cross section

Justification document:
Uncertainties on the predicted regeneration gain inferred from the uncertainties of the nuclear data have been estimated showing a 4200 pcm uncertainty for a regeneration gain designed to be 200 pcm, i.e. very close to a complete balancing of production and destruction of U-233. The main culprits are nubar contributing 2200 pcm and the capture cross section contributing 3260 pcm. A target accuracy of 2000 pcm is required to facilitate defining the reprocessing scheme for a molten salt reactor.
Reference:
A. Bidaud, Impact of Nuclear Data Uncertainties on a GEN IV Thorium Reactor at Equilibrium (attached document).
CEA Technical Note NT-SPRC/LEPH-05/204, G. Noguere et al (attachment 2).

Comment from requester:
Owing to the difficulty in measuring the U-233(n,g) cross section, a new evaluation could be done on the basis of the Profil results (see CEA Technical Note NT-SPRC/LEPH-05/204).

Review comment:

Any effort done to reduce the uncertainties on neutron yields and capture cross section down to less than 1% and about 5% respectively or at least to confirm their uncertaast fission, fusion, medical 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:



Request ID49 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 42-MO-92 (n,p)Nb-92m SIG,SPA  252Cf(sf)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_Cf252.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_Cf252.pdf



Request ID50 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 28-NI-60 (n,p) SIG,SPA  252Cf(sf)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_Cf252.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_Cf252.pdf



Request ID51 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 26-FE-54 (n,a) SIG,SPA  252Cf(sf)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes, especially for improvement of the prompt fission neutron spectrum at high energy. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Validation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID52 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 33-AS-75 (n,2n) SIG,SPA  252Cf(sf)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID53 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 39-Y-89 (n,2n) SIG,SPA  252Cf(sf)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Validation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID54 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 25-MN-55 (n,g) SIG,SPA  235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_U235.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:
Non-threshold reactions measured in fast spectra such as the 252Cf(sf) and 235U(nth,f) spectrum tend to have their spectrum averaged cross section dominated by scattering contributions and ‘room-return’ neutrons. Experiments should be designed to minimize these contributions and maximize the reaction rate from the primary source. For new experiments best estimates must be provided by detailed Monte Carlo calculation of the spectrum realized in the experiment and the Monte Carlo model must be made available to IRDFF to facilitate validation of new proposals for the cross section. In all cases it is advised to publish both the fully corrected SACS and the measured reaction rates of the primary reaction and the monitor reactions used for normalization and validation of the model. The measured reaction rates must be provided with a full covariance matrix.

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf



Request ID55 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 92-U-238 (n,g) SIG,SPA  235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_U235.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:
Non-threshold reactions measured in fast spectra such as the 252Cf(sf) and 235U(nth,f) spectrum tend to have their spectrum averaged cross section dominated by scattering contributions and ‘room-return’ neutrons. Experiments should be designed to minimize these contributions and maximize the reaction rate from the primary source. For new experiments best estimates must be provided by detailed Monte Carlo calculation of the spectrum realized in the experiment and the Monte Carlo model must be made available to IRDFF to facilitate validation of new proposals for the cross section. In all cases it is advised to publish both the fully corrected SACS and the measured reaction rates of the primary reaction and the monitor reactions used for normalization and validation of the model. The measured reaction rates must be provided with a full covariance matrix.

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf



Request ID56 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 29-CU-63 (n,g) SIG,SPA  235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_U235.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:
Non-threshold reactions measured in fast spectra such as the 252Cf(sf) and 235U(nth,f) spectrum tend to have their spectrum averaged cross section dominated by scattering contributions and ‘room-return’ neutrons. Experiments should be designed to minimize these contributions and maximize the reaction rate from the primary source. For new experiments best estimates must be provided by detailed Monte Carlo calculation of the spectrum realized in the experiment and the Monte Carlo model must be made available to IRDFF to facilitate validation of new proposals for the cross section. In all cases it is advised to publish both the fully corrected SACS and the measured reaction rates of the primary reaction and the monitor reactions used for normalization and validation of the model. The measured reaction rates must be provided with a full covariance matrix.

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf



Request ID57 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 57-LA-139 (n,g) SIG,SPA  235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_U235.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:
Non-threshold reactions measured in fast spectra such as the 252Cf(sf) and 235U(nth,f) spectrum tend to have their spectrum averaged cross section dominated by scattering contributions and ‘room-return’ neutrons. Experiments should be designed to minimize these contributions and maximize the reaction rate from the primary source. For new experiments best estimates must be provided by detailed Monte Carlo calculation of the spectrum realized in the experiment and the Monte Carlo model must be made available to IRDFF to facilitate validation of new proposals for the cross section. In all cases it is advised to publish both the fully corrected SACS and the measured reaction rates of the primary reaction and the monitor reactions used for normalization and validation of the model. The measured reaction rates must be provided with a full covariance matrix.

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf



Request ID58 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 45-RH-103 (n,inl)Rh-103m SIG,SPA  235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_U235.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf



Request ID59 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 69-TM-169 (n,2n) SIG,SPA  235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See CE_U235_and_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:CE_U235_and_HighThreshold.pdf



Request ID60 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 29-CU-65 (n,2n) SIG,SPA  235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID61 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 25-MN-55 (n,2n) SIG,SPA  235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See SPA_CE_U235.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf



Request ID62 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 28-NI-58 (n,2n) SIG,SPA  235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See SPA_CE_U235.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_U235.pdf



Request ID63 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 95-AM-241 (n,f) SIG,SPA  252Cf(sf)-235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:
Non-threshold reactions measured in fast spectra such as the 252Cf(sf) and 235U(nth,f) spectrum tend to have their spectrum averaged cross section dominated by scattering contributions and ‘room-return’ neutrons. Experiments should be designed to minimize these contributions and maximize the reaction rate from the primary source. For new experiments best estimates must be provided by detailed Monte Carlo calculation of the spectrum realized in the experiment and the Monte Carlo model must be made available to IRDFF to facilitate validation of new proposals for the cross section. In all cases it is advised to publish both the fully corrected SACS and the measured reaction rates of the primary reaction and the monitor reactions used for normalization and validation of the model. The measured reaction rates must be provided with a full covariance matrix.

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:



Request ID64 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 15-P-31 (n,p) SIG,SPA  252Cf(sf)-235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
Measurements of the 252Cf(sf)-spectrum-averaged cross section are missing for validation purposes. New measurements of the 235U(n,f)-spectrum-averaged cross section are requested to solve C/E discrepancy. See SPA_CE_Cf252U235.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:SPA_CE_Cf252U235.pdf



Request ID65 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 92-U-238 (n,2n) SIG,SPA  252Cf(sf)-235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
New measurements of the spectrum-averaged cross section are requested to solve C/E discrepancy and for improvement of the prompt fission neutron spectrum at high energy. See CE_Cf252U235_and_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:CE_Cf252U235_and_HighThreshold.pdf



Request ID66 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 49-IN-115 (n,2n)In-114m SIG,SPA  252Cf(sf)-235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID67 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 59-PR-141 (n,2n) SIG,SPA  252Cf(sf)-235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID68 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 24-CR-52 (n,2n) SIG,SPA  252Cf(sf)-235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID69 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 11-NA-23 (n,2n) SIG,SPA  252Cf(sf)-235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID70 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 13-AL-27 (n,2n) SIG,SPA  252Cf(sf)-235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID71 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 22-TI-46 (n,2n) SIG,SPA  252Cf(sf)-235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are requested for validation purposes in 235U(n,f) neutron fields, for solving C/E discrepancy in 252Cf(sf) fields, and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See CE_Cf252U235_and_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:CE_Cf252U235_and_HighThreshold.pdf



Request ID72 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 50-SN-117 (n,inl)Sn-117m SIG,SPA  252Cf(sf)-235U(n,f)  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Mr Christophe DESTOUCHES at CAD-DER, FR
Email: christophe.destouches@cea.fr

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The Sn-117(n,n') reaction has by far the lowest reaction threshold and would probe the energy region in the 100 keV range [Destouches2016,2017]. The cross section database is poor. A new evaluation of the cross section is needed, as well as integral measurements in well-characterised neutron fields.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., Proposals for new measurements for IRDFF community and HPRL, September 2017.
  • [Destouches2016] C. Destouches, EPJ Conferences 111, 01002 (2016).
  • [Destouches2017] C. Destouches, et al., The 117Sn(n,n')117mSn reaction: a suitable candidate to investigate the epithermal neutron spectrum by reactor dosimetry techniques, Int. Conf. on Nuclear Energy for New Europe (NENE), Bled, Slovenia, September 11-14, 2017 (NENE 2017 Proceedings).

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:Simakov2017.pdf
Additional file attached:Sn117(n,n)Sn117m.pdf



Request ID73 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 22-TI-47 (n,np) SIG,SPA  252Cf(sf)-235U(n,f)  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion, high-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:



Request ID74 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 22-TI-48 (n,np) SIG,SPA  252Cf(sf)-235U(n,f)  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion, high-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:



Request ID75 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 22-TI-49 (n,np) SIG,SPA  252Cf(sf)-235U(n,f)  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry D-T fusion, high-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:



Request ID76 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 26-FE-54 (n,2n) SIG,SPA  252Cf(sf)-235U(n,f)  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID77 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 69-TM-169 (n,3n) SIG,SPA  252Cf(sf)-235U(n,f)  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID78 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 83-BI-209 (n,3n) SIG,SPA  252Cf(sf)-235U(n,f)  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID79 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 27-CO-59 (n,3n) SIG,SPA  252Cf(sf)-235U(n,f)  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].
Following a recommendation from the IAEA Data Development Project on Neutron Standards [Pronyaev2013], the IRDFF project supports SACS measurements of high-threshold (above 10 MeV) dosimetry cross-sections in well-characterized 252Cf(sf) and 235U(nth,f) neutron fields in order to improve the cross sections and/or the high-energy part of the prompt fission neutron spectra.

Comment from requester:
Measurements of the spectrum-averaged cross section are missing for validation purposes and for improvement of the cross section and prompt fission neutron spectrum above 10 MeV. See Cf252U235_HighThreshold.pdf below.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.
  • [Pronyaev2013] V.G. Pronyaev, A.D. Carlson and R. Capote Noy, “Toward a New Evaluation of Neutron Standards”, IAEA Technical Meeting, 8-12 July 2013, INDC(NDS)-0641.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Cf252U235_HighThreshold.pdf



Request ID80 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 50-SN-117 (n,inl)Sn-117m SIG  5 MeV-10 MeV  2-5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry Fast fission, D-T fusion 06-OCT-17 06-OCT-17 

Requester: Mr Christophe DESTOUCHES at CAD-DER, FR
Email: christophe.destouches@cea.fr

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
2%-5%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The Sn-117(n,n') reaction has by far the lowest reaction threshold and would probe the energy region in the 100 keV range [Destouches2016,2017]. The cross section database is poor. A new evaluation of the cross section is needed, as well as integral measurements in well-characterised neutron fields.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., Proposals for new measurements for IRDFF community and HPRL, September 2017.
  • [Destouches2016] C. Destouches, EPJ Conferences 111, 01002 (2016).
  • [Destouches2017] C. Destouches, et al., The 117Sn(n,n')117mSn reaction: a suitable candidate to investigate the epithermal neutron spectrum by reactor dosimetry techniques, Int. Conf. on Nuclear Energy for New Europe (NENE), Bled, Slovenia, September 11-14, 2017 (NENE 2017 Proceedings).

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Validation

Additional file attached:Simakov2017.pdf
Additional file attached:Sn117(n,n)Sn117m.pdf



Request ID81 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 26-FE-0 (n,x)Mn-54 SIG  15 MeV-100 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:



Request ID82 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 39-Y-89 (n,p) SIG  15 MeV-100 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:Simakov2017.pdf
Additional file attached:Y89(n,xn).pdf



Request ID83 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 39-Y-89 (n,xn) x=2-4 SIG  15MeV/Thr.-100 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Y89(n,xn).pdf



Request ID84 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 22-TI-0 (n,x)Sc-46 SIG  15 MeV-100 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:



Request ID85 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 22-TI-0 (n,x)Sc-47 SIG  15 MeV-100 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:



Request ID86 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 22-TI-0 (n,x)Sc-48 SIG  15 MeV-100 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:



Request ID87 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 71-LU-175 (n,xn) x=2-4 SIG  15MeV/Thr.-100 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:Simakov2017.pdf
Additional file attached:Lu(n,xn).pdf



Request ID88 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 41-NB-93 (n,xn) x=2-4 SIG  15MeV/Thr.-100 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.
The present request concerns the following reactions:
Nb-93(n,2n)Nb-92m
Nb-93(n,3n)Nb-91m
Nb-93(n,4n)Nb-90

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

  • M. Majerle, P. Bem, et al., Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p+7Li reaction in the energy range of 18-36 MeV, Nuclear Physics A 953 (2016) 139

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Nb(n,xn).pdf



Request ID89 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 29-CU-63 (n,2n) SIG  20 MeV-100 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:



Request ID90 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 26-FE-54 (n,2n) SIG  15 MeV-100 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Fe54n2n.pdf



Request ID91 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 79-AU-197 (n,xn) x=3-5 SIG  20MeV/Thr.-100 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Additional file attached:Simakov2017.pdf
Additional file attached:Au(n,xn)_HighEnDos.pdf



Request ID92 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 69-TM-169 (n,xn) x=2-3 SIG  15 MeV-100 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Tm(n,xn).pdf



Request ID93 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 83-BI-209 (n,xn) x=3-10 SIG  20MeV/Thr.-150 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Bi(n,xn)_HighEnDos.pdf



Request ID94 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 27-CO-59 (n,xn) x=3-5 SIG  20MeV/Thr.-150 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

  • M. Majerle, P. Bem, et al., Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p+7Li reaction in the energy range of 18-36 MeV, Nuclear Physics A 953 (2016) 139
  • M. Majerle, et al., Experimental Validation of IRDFF Cross-Sections in Quasi-MonoEnergetic Neutron Fluxes in 20-35 MeV Energy Range, IAEA report INDC(NDS)-0789, May 2019

Theory/Evaluation

Additional file attached:Simakov2017.pdf
Additional file attached:Co(n,xn).pdf



Request ID95 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 45-RH-103 (n,xn) x=4-8 SIG  Threshold-150 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:Simakov2017.pdf
Additional file attached:Pronyaev-nxn-high-en-dos.pdf



Request ID96 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 57-LA-139 (n,xn) x=4-10 SIG  Threshold-150 MeV  5-10 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Dosimetry High-energy 06-OCT-17 06-OCT-17 

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER
Email: stanislav.simakov@partner.kit.edu

Project (context): IRDFF project

Impact:
The International Reactor Dosimetry and Fusion File (IRDFF) aims at providing evaluated neutron dosimetry reactions validated for all applications related to fission reactors and fusion technology development [IAEA2017].

Accuracy:
5%-10%

Justification document:
Accurate cross sections as well as spectrum-averaged cross sections (SACS) in relevant and well-characterized neutron fields are essential for improvement and validation of the evaluated data [Simakov2017].

Comment from requester:
The IRDFF project strives to evaluate, and eventually add to the library, high-threshold reactions with cross section plateaus located between 15/20 MeV and 100/150 MeV to meet the requirements of the accelerator-driven high-energy neutron sources. Note that it is important to know the cross section tail up to 100/150 MeV in order to allow the deconvolution of high-energy quasi-monoenergetic neutron source spectra.

References

  • [IAEA2017] IAEA CRP on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF),
    http://www-nds.iaea.org/IRDFFtest/.
  • [Simakov2017] S. Simakov, et al., “Proposals for new measurements for IRDFF community and HPRL”, September 2017.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:Simakov2017.pdf
Additional file attached:Pronyaev-nxn-high-en-dos.pdf



Request ID100 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 92-U-235 (n,f),(p,f) SIG  100 MeV-500 MeV  5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Standard ADS 23-MAR-18 11-APR-18 Y

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org

Project (context):

Impact:

Improvements in the standard cause all measurements relative to that standard to be improved. See Ref. [1].

Accuracy:

5% of the cross-section

Justification document:

There are discrepancies (see Fig. 24 in section III.E, pp.161-162 of Ref. [1]) between different theoretical calculations, data estimated from the (p,f) reaction, and the only measured data set of U-238(n,f) cross section at those energies [2]. New measurements of absolute cross sections of U-235 or U-238 (n,f) and/or U-235 or U-238 (p,f) reactions in the energy range where pion channels begin to play an important role (100-500 MeV) are needed to solve the discrepancies and to reduce the uncertainties of the Neutron Standards in that energy range.

References

  1. A.D. Carlson, et al., Evaluation of the Neutron Data Standards, Nuclear Data Sheets 148, 143-188 (2018)
  2. Z.W. Miller, A Measurement of the Prompt Fission Neutron Energy Spectrum for 235U(n,f) and the Neutron-induced Fission Cross Section for 238U(n,f), PhD Thesis, University of Kentucky (2015); https://uknowledge.uky.edu/physastron_etds/29/

Comment from requester:

At high-energy the (n,f) cross-section can be inferred with rather low uncertainty from (p,f) cross-section measurements, and thanks to this can be used in the neutron standards evaluation.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

  • U-235 measurement performed at n_TOF in 2018

Theory/Evaluation

  • B. Marcinkevicius, S. Simakov, V. Pronyaev, 209Bi(n,f) and natPb(n,f) cross sections as a new reference and extension of the 235U, 238U and 239Pu(n,f) standards up to 1 GeV, IAEA Report INDC(NDS)-0681
  • A.D. Carlson et al., Evaluation of the Neutron Data Standards, NDS 148 (2018) 143

Additional file attached:
Additional file attached:



Request ID101 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 92-U-238 (n,f),(p,f) SIG  100 MeV-500 MeV  5 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Standard ADS 23-MAR-18 11-APR-18 Y

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org

Project (context):

Impact:

Improvements in the standard cause all measurements relative to that standard to be improved. See Ref. [1].

Accuracy:

5% of the cross-section

Justification document:

There are discrepancies (see Fig. 24 in section III.E, pp.161-162 of Ref. [1]) between different theoretical calculations, data estimated from the (p,f) reaction, and the only measured data set of U-238(n,f) cross section at those energies [2]. New measurements of absolute cross sections of U-235 or U-238 (n,f) and/or U-235 or U-238 (p,f) reactions in the energy range where pion channels begin to play an important role (100-500 MeV) are needed to solve the discrepancies and to reduce the uncertainties of the Neutron Standards in that energy range.

References

  1. A.D. Carlson, et al., Evaluation of the Neutron Data Standards, Nuclear Data Sheets 148, 143-188 (2018)
  2. Z.W. Miller, A Measurement of the Prompt Fission Neutron Energy Spectrum for 235U(n,f) and the Neutron-induced Fission Cross Section for 238U(n,f), PhD Thesis, University of Kentucky (2015); https://uknowledge.uky.edu/physastron_etds/29/

Comment from requester:

At high-energy the (n,f) cross-section can be inferred with rather low uncertainty from (p,f) cross-section measurements, and thanks to this can be used in the neutron standards evaluation.

Review comment:

Entry Status:
Work in progress (as of SG-C review of May 2018)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Theory/Evaluation

  • B. Marcinkevicius, S. Simakov, V. Pronyaev, 209Bi(n,f) and natPb(n,f) cross sections as a new reference and extension of the 235U, 238U and 239Pu(n,f) standards up to 1 GeV, IAEA Report INDC(NDS)-0681
  • A.D. Carlson et al., Evaluation of the Neutron Data Standards, NDS 148 (2018) 143

Additional file attached:
Additional file attached:



Request ID104 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 9-F-19 (n,2n) SIG,SPA  239Pu(n,f)  3 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission Dosimetry 26-MAR-18 06-JUN-18 

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org

Project (context):

Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].

Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections

Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].

References

  1. D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
  2. R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)

Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).

Review comment:

Entry Status:
Work in progress (as of SG-C review of June 2019)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:
Additional file attached:



Request ID105 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 25-MN-55 (n,2n) SIG,SPA  239Pu(n,f)  3 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission Dosimetry 26-MAR-18 06-JUN-18 

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org

Project (context):

Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].

Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections

Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].

References

  1. D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
  2. R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)

Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).

Review comment:

Entry Status:
Work in progress (as of SG-C review of June 2019)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:
Additional file attached:



Request ID106 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 27-CO-59 (n,2n) SIG,SPA  239Pu(n,f)  3 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission Dosimetry 26-MAR-18 06-JUN-18 

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org

Project (context):

Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].

Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections

Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].

References

  1. D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
  2. R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)

Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).

Review comment:

Entry Status:
Work in progress (as of SG-C review of June 2019)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:
Additional file attached:



Request ID107 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 28-NI-58 (n,2n) SIG,SPA  239Pu(n,f)  3 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission Dosimetry 26-MAR-18 06-JUN-18 

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org

Project (context):

Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].

Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections

Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].

References

  1. D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
  2. R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)

Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).

Review comment:

Entry Status:
Work in progress (as of SG-C review of June 2019)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:
Additional file attached:



Request ID108 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 33-AS-75 (n,2n) SIG,SPA  239Pu(n,f)  3 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission Dosimetry 26-MAR-18 06-JUN-18 

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org

Project (context):

Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].

Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections

Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].

References

  1. D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
  2. R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)

Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).

Review comment:

Entry Status:
Work in progress (as of SG-C review of June 2019)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:
Additional file attached:



Request ID109 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 39-Y-89 (n,2n) SIG,SPA  239Pu(n,f)  3 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission Dosimetry 26-MAR-18 06-JUN-18 

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org

Project (context):

Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].

Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections

Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].

References

  1. D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
  2. R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)

Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).

Review comment:

Entry Status:
Work in progress (as of SG-C review of June 2019)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:
Additional file attached:



Request ID110 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 40-ZR-90 (n,2n) SIG,SPA  239Pu(n,f)  3 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission Dosimetry 26-MAR-18 06-JUN-18 

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org

Project (context):

Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].

Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections

Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].

References

  1. D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
  2. R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)

Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).

Review comment:

Entry Status:
Work in progress (as of SG-C review of June 2019)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:
Additional file attached:



Request ID111 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 41-NB-93 (n,2n)Nb-92m SIG,SPA  239Pu(n,f)  3 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission Dosimetry 26-MAR-18 06-JUN-18 

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org

Project (context):

Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].

Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections

Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].

References

  1. D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
  2. R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)

Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).

Review comment:

Entry Status:
Work in progress (as of SG-C review of June 2019)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:
Additional file attached:



Request ID112 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 53-I-127 (n,2n) SIG,SPA  239Pu(n,f)  3 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission Dosimetry 26-MAR-18 06-JUN-18 

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org

Project (context):

Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].

Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections

Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].

References

  1. D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
  2. R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)

Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).

Review comment:

Entry Status:
Work in progress (as of SG-C review of June 2019)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:
Additional file attached:



Request ID113 Type of the request Special Purpose Quantity
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 69-TM-169 (n,2n) SIG,SPA  239Pu(n,f)  3 Y
FieldSubfieldDate Request createdDate Request acceptedOngoing action
 Fission Dosimetry 26-MAR-18 06-JUN-18 

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT
Email: roberto.capotenoy@iaea.org

Project (context):

Impact:
A better knowledge of the prompt fission neutron spectrum (PFNS) from Pu-239 thermal-neutron induced fission is important for high-burnup fuels and new generation reactors. This is especially true when considering neutron radiation damage from the PFNS high-energy tail, which can be improved thanks to the measurements of spectrum-averaged cross section (SACS) of well-known high-threshold dosimetry reactions.
Deficiency in Pu-239(n,f) PFNS at large outgoing energies may be responsible for the discrepancies shown in Fig. 178 above 7.5 MeV of average reaction energy, see Fig. 178 in Ref. [1].

Accuracy:
3% cross-section ratio uncertainty relative to reference cross sections

Justification document:
No SACS measurements exist in Pu-239(nth,f) prompt neutron field. In the latest IAEA evaluation, the extrapolation of Pu-239(nth,f) PFNS to outgoing energies above 8 MeV is based on SACS estimated by interpolation between SACS measured in U-233, U-235 and Cf-252 prompt neutron fields, see page 74-76, Fig. 43 and Table XXVI in Ref. [2].

References

  1. D. Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1 (http://doi.org/10.1016/j.nds.2018.02.001)
  2. R. Capote et al., Prompt Fission Neutron Spectra of Actinides, Nuclear Data Sheets 131 (2016) 1 (http://doi.org/10.1016/j.nds.2015.12.002)

Comment from requester:
SACS measurements of high-threshold dosimetry reactions are requested to improve further the high-energy tail of Pu-239(nth,f) PFNS above 8 MeV of outgoing energy. These measurements should be performed relative to high-threshold reference cross sections: Al-27(n,a), Au-197(n,2n), Ni-58(n,p).

Review comment:

Entry Status:
Work in progress (as of SG-C review of June 2019)

Main references:
Please report any missing information to hprlinfo@oecd-nea.org

Additional file attached:
Additional file attached: