Fig. 1. C/E ratio in 252Cf(s.f.) field: obvious outliers: 59Co(n,γ), 92Mo(n,p), 60Ni(n,p) and 46Ti(n,2n).

Fig. 2. C/E ratio in 252Cf(s.f.) field: all measured data but without obvious outliers. Error bars include only experimental (black), additionally IRDFF-1.03 evaluated XS (blue) and Cf(s.f.) spectrum (pink) uncertainties. C/E for outliers 59Co(n,γ), 92Mo(n,p), 60Ni(n,p) and 46Ti(n,2n) are located outside of Figure.

The same but for U-235 field
Back to CRP web-page
C/E ratio for spectrum averaged cross sections (SPA) in 235U(n$_{th}$,f) field

Fig. 1. C/E ratio in 235U(n$_{th}$,f) field: obvious outliers: 55Mn(n,γ), 238U(n,γ), 139La(n,γ), 31P(n,p) and 238U(n,2n). Error bars include only experimental (black) and additionally IRDFF XS and ENDF/B-VII.1 spectrum (red) uncertainties. 6Li(n,α), 10B(n,α) are not outliers, since inclusion of other α-production reactions increase C/E up to 1.0 !

Fig. 2. The same as Fig. 1, but log scale for energy.
Fig. 3. C/E with IRDFF-1.03 cross sections averaged in the 235U(n$_{th}$,f) PFNS from ENDF/B-VII.1 [1]. Uncertainties: experimental SPA (black bars), IRDFF-1.03 cross sections (blue), evaluated spectra (pink) - not shown.

Fig. 4. C/E with IRDFF-1.03 cross sections averaged in the 235U(n$_{th}$,f) PFNS from ENDF/B-VII.1 [1] and Scale method [2]. Uncertainties: experimental SPA (black bars), IRDFF-1.03 cross sections (red), evaluated spectra - not shown. Three curved arrows show the change of C/E for 127I(n,2n), 55Mn(n,2n) and 58Ni(n,2n) when SPA recommended by W. Mannhart are replaced with K. Zolotarev values.
Reference

1. M.B. Chadwick, M. Herman et al., Nuclear Data Sheets, 112, 2887 (2011)

The same but for Cf-252 field
Back to CRP web-page