

C/E ratio for spectrum averaged cross sections (SPA) in ²³⁵U(n_{th},f) field

Fig. 2. The same as Fig. 1, but log scale for energy.

Fig. 3. C/E with IRDFF-1.03 cross sections averaged in the 235 U(n_{th},f) PFNS from ENDF/B-VII.1 [1]. Uncertainties: experimental SPA (black bars), IRDFF-1.03 cross sections (blue), evaluated spectra (pink) - not shown.

Fig. 4. C/E with IRDFF-1.03 cross sections averaged in the 235 U(n_{th},f) PFNS from ENDF/B-VII.1 [1] and Scale method [2]. Uncertainties: experimental SPA (black bars), IRDFF-1.03 cross sections (red), evaluated spectra - not shown. Three curved arrows show the change of C/E for 127 I(n,2n), 55 Mn(n,2n) and 58 Ni(n,2n) when SPA recommended by W. Mannhart are replaced with K. Zolotarev values.

Reference

- 1. M.B. Chadwick, M. Herman et al., Nuclear Data Sheets, 112, 2887 (2011)
- 2. N.V. Kornilov, Nucl. Sci. Eng., 169, 290 (2011)

The same but for <u>Cf-252 field</u> Back to <u>CRP web-page</u>

Spectrum averaged cross sections (SPA) for the high threshold dosimetry reactions: feasibility of activation and other alternative experimental techniques for SPA at level of 1 - 1000 µb

I. SPA cross sections for the high threshold dosimetry reactions

Following the recommendation of the IAEA Technical Meeting "Toward a New Evaluation of Neutron Standards", 8-12 July 2013 (INDC(NDS)- 0641): "... assessing the possibility of using the AMS technique for the measurement of the ²³⁵U(n_{th} ,f) or ²³⁵U(n_{cold} ,f) prompt fission neutron averaged cross sections which can be used for validation of the prompt fission neutron spectrum at energies above 8 MeV ($\langle E_{50\%} \rangle > 8$ MeV)" the **spectrum averaged cross sections** (SPA) were calculated for several high threshold IRDFF reactions in ²⁵²Cf(s.f.) and ²³⁵U(n_{th} ,f) fields:

		Б			N . / N				
IKDFF reactions	E _{thr}	E50%	SPA	., μο	1^{N} product / 1^{N} target if 10^{8} m/cm ² /c = 10001	Comments			
and their products	MeV	MeV	IRDFF	Experiment ²	11 10 n/cm /s, 1000n	- 9			
252 Cf(s.f.) Spontaneous Fission Spectra: given 252 Cf produces Flux = 10 ⁸ n/cm ² /s (i.e. at \approx 1 cm from 252 Cf of 10 ⁹ n/s intensity ³)									
54r () $51c$ () 27.7 () $51x$ () 1)			$\frac{1112}{1112} + 2.60$	$\frac{00 \text{ II} - 4.17 \text{ week}}{100 \text{ II} - 4.17 \text{ week}}$	4007.10-16				
$Fe(n,\alpha)^{r}Cr(\epsilon, 2/./d) \rightarrow V (stable)$	0	/.430	$1113 \pm 3.6\%$	No Exp	400/10**				
238 U(n,2n) ²³⁷ U (β ⁻ , 6.75 d) \rightarrow 237 Np (2.14 My	() 6.180	8.276	20584 ± 2.4%	$\frac{19200 \pm 10\%}{12200 \pm 12\%}$	74100 10 ⁻¹⁶	Blinov vs. Shani: measurements discrepant !!!			
$^{232}Th(n,2n)^{231}Th(\beta^{-}, 26 d) \rightarrow ^{231}Pa(3.28 kY)$	6.448		24377 (B-VII.1)	No Exp	$87757 \ 10^{-16}$				
169 Tm(n,2n) 168 Tm (ϵ , 93 d) $\rightarrow ^{168}$ Er (stable)	8.082	10.400	$6260 \pm 2.4\%$	$6690\pm 6.3\%$	22536 10 ⁻¹⁶				
$^{130}Te(n,2n)^{129}Te(IT, \beta^{-}, 34 d) \rightarrow ^{129}I(stable)$	e) 8.484		3494 (B-VII.1)	No Exp	<i>12578 10⁻¹⁶</i>	AMS threshold ^W = 10^{-14}			
141 Pr(n,2n) 140 Pr (ε , 3.4 min) \rightarrow 140 Ce (stable)	9.464	11.85	$1990\pm11.1\%$	No Exp.	7164 10 ⁻¹⁶				
⁷⁵ As(n,2n) ⁷⁴ As (ε , 17.8 d) → ⁷⁴ Ge (stable)	10.383	12.91	621 ± 5.8%	No Exp.	2236 10 ⁻¹⁶				
¹¹⁵ In(n,2n) ^{114m} In (IT, 50 d; β) \rightarrow ¹¹⁴ Sn (stable	e) 10.633	13.09	$1633 \pm 5.0\%$	No Exp.	5879 10 ⁻¹⁶				
⁵⁹ Co(n,2n) ⁵⁸ Co (ε, 70 d) → ⁵⁸ Fe (stable)	10.633	13.09	$410\pm0.0\%$	$405 \pm 2.5\%$	1476 10 ⁻¹⁶				
$^{238}U(n,3n)^{236}U(\alpha, 2.34\ 10^7\ y) \rightarrow ^{232}Th \ (stable)$) 11.330		163 (B-VII.1)	No Exp.	567 10 ⁻¹⁶	AMS threshold ^W = 10^{-11}			
${}^{56}Fe(n,2n){}^{55}Fe(\varepsilon, 2.74y) \longrightarrow {}^{55}Mn$ (stable)	11.40		170 (B-VII.1)	No Exp.	612 10 ⁻¹⁶	AMS threshold ^W = 10^{-14}			
⁸⁹ Y(n,2n) ⁸⁸ Y (ε, 107 d) → ⁸⁸ Sr (stable)	11.612	13.90	346 ± 1.3%	No Exp.	1246 10 ⁻¹⁶				
52 Cr(n,2n) 51 Cr (ϵ , 27.7 d) $\rightarrow ^{51}$ V (stable	12.272	14.71	$97 \pm 2.7\%$	No Exp.	360 10 ⁻¹⁶				
²³ Na(n,2n) ²² Na (ε, 2.60 y) → ²² Ne (stable) 12.419	15.40	8.6 ± 1.2%	No Exp.	31 10 ⁻¹⁶				
⁴⁶ Ti(n,2n) ⁴⁵ Ti (ϵ , 3.1 h) \rightarrow ⁴⁵ Sc (stable)	13.479	16.03	12.2± 3.1%	93 ± 33% (?)	44 10 ⁻¹⁶	C/E = 0.13 ± 33% ???!!!			
$^{27}Al(n,2n)^{26}Al(\varepsilon, 7.17\ 10^5\ y) \rightarrow ^{26}Mg(stable)$) 13.55		5.7 (B-VII.1)	No Exp.	21 10-16	AMS threshold ^W = 10^{-13}			
54 Fe(n,2n) 53 Fe (ϵ , 8.5 min) $\rightarrow ^{53}$ Mn (3.7 My) 13.629	16.48	3.5 ± 1.5%	No Exp.	13 10 ⁻¹⁶	not for AMS ^W due to impact of ⁵⁴ Fe(n,np+d) ⁵³ Mn			

Table 1. Dosimetry reactions, their stable products, kinematic threshold E_{thr} , effective energy $E_{50\%}$ and SPA in the ²⁵²Cf(s.f.) field, sorted by increasing $E_{50\%}$.

IRDFF reactions	E_{thr}	E50%	SPA, μb		N _{product} / N _{target}	Comments	
and their products	MeV	MeV	IRDFF ¹	Experiment ²	if 10 ⁸ n/cm ² /s, 1000h		
²⁵² Cf(s.f.) Spontaneous Fission Spectra: given ²⁵² Cf produces Flux = 10 ⁸ n/cm ² /s (i.e. at ≈1 cm from ²⁵² Cf of 10 ⁹ n/s intensity ³)							
and Irradiation of sample = 1000 h = 4.17 weeks							
$^{209}\text{Bi}(n,3n)^{207}\text{Bi}(\epsilon, 31.6 \text{ y}) \rightarrow ^{207}\text{Pb} \text{ (stable)}$	14.416	18.21	$19\pm6.0\%$	No Exp.	68 10 ⁻¹⁶		
169 Tm(n,3n) 167 Tm (ϵ , 9.3 d) $\rightarrow ^{167}$ Er (stable)	14.963	18.49	$14.7 \pm 5.7\%$	No Exp.	54 10 ⁻¹⁶		
59 Co(n,3n) 57 Co (ϵ , 271 d) $\rightarrow ^{57}$ Fe (stable)	19.352	22.36	$0.097\pm5.6\%$	No Exp.	0.35 10 ⁻¹⁶		

Example of calculation for ²⁷Al(n,2n)²⁶Al: Ratio ²⁶Al/²⁷Al = Flux × Time × Sigma = 1.E+8 n/cm²/s × 3.6E+6 s × 5.7E-30 cm² = 20.5E-16

IRDFF reactions	E_{thr}	E50%	SPA, µb		N _{product} / N _{target}	Comments	
and their products	MeV	MeV	IRDFF^1	Experiment ²	if 10 ⁹ n/cm ² /s, 100 h		
235 U(n _{th} ,f) neutron induced Fission Spectra: given n-Source produce Flux = 10 ⁹ n/cm ² /s (cp. 1.9 10 ⁹ n/cm ² /s from fission plate in KUR facilty ⁴)							
	and	Irradiatio	n of sample = 10	0 h = 0.417 week	KS		
169 Tm(n,2n) 168 Tm (ϵ , 93 d) $\rightarrow ^{168}$ Er (stable)	8.082	10.40	$3744\pm2.6\%$	$3735\pm4.2\%$	13478 10 ⁻¹⁶		
¹¹⁵ In(n,2n) ¹¹⁴ In (IT, 50 d; β ⁻) \rightarrow ¹¹⁴ Sn (stable)	10.633	11.60	861 ± 5.5%	No Exp.	3100 10 ⁻¹⁶		
141 Pr(n,2n) 140 Pr (ϵ , 3.4 min) \rightarrow 140 Ce (stable)	9.464	11.65	$1043 \pm 12.0\%$	No Exp.	3755 10 ⁻¹⁶		
65 Cu(n,2n) ⁶⁴ Cu (ε, 12.7 h) → 64 Ni (stable) 64 Cu (β ⁻ , 12.7 h) → 64 Zn (stable)	10.065	12.46	$318 \pm 2.0\%$	No Exp.	${}^{64}\text{Ni}/{}^{65}\text{Cu} = 704 \ 10^{-16}$ ${}^{64}\text{Zn}/{}^{65}\text{Cu} = 441 \ 10^{-16}$		
⁷⁵ As(n,2n) ⁷⁴ As (ε, 17.8 d) → ⁷⁴ Ge (stable)	10.383	12.70	$295\pm6.4\%$	No Exp.	1062 10 ⁻¹⁶		
59 Co(n,2n) 58 Co (ϵ , 70 d) $\rightarrow ^{58}$ Fe (stable)	10.633	13.09	$191\pm1.8\%$	$203\pm2.5\%$	688 10 ⁻¹⁶		
$^{238}U(n,3n)^{236}U(\alpha, 2.34\ 10^7\ y) \rightarrow ^{232}Th\ (stable)$	11.330		682 (BVII.0)	No Exp.	2455 10 ⁻¹⁶		
${}^{56}Fe(n,2n){}^{55}Fe(\varepsilon, 2.74 y) \longrightarrow {}^{55}Mn$ (stable)	11.400		739 (BVII.1)	No Exp.	2660 10 ⁻¹⁶	AMS threshold ^W = 10^{-14}	
⁸⁹ Y(n,2n) ⁸⁸ Y (ε, 107 d) → ⁸⁸ Sr (stable)	11.612	13.90	$149 \pm 1.4\%$	150 ± 3.3%	536 10 ⁻¹⁶		

Table 2. Dosimetry reactions, their stable products, kinematic threshold E_{thr} , effective energy $E_{50\%}$ and SPA in the ²³⁵U(n_{th} ,f) field, sorted by increasing $E_{50\%}$.

IRDFF reactions	E _{thr}	E50%	SPA, µb		N _{product} / N _{target}	Comments	
and their products	MeV	MeV	IRDFF ¹	Experiment ²	if 10 ⁹ n/cm ² /s, 100 h		
²³⁵ U(n _{th} ,f) neutron induced Fission Spectra: given n-Source produce Flux = 10 ⁹ n/cm ² /s (cp. 1.9 10 ⁹ n/cm ² /s from fission plate in KUR facilty ⁴)							
	and	Irradiation	n of sample = 1	00 h = 0.417 week	KS		
52 Cr(n,2n) 51 Cr (ϵ , 27.7 d) $\rightarrow ^{51}$ V (stable)	12.272	14.71	$38 \pm 2.7\%$	No Exp.	137 10 ⁻¹⁶		
²³ Na(n,2n) ²² Na (ε , 2.60 y) \rightarrow ²² Ne (stable)	12.419	15.40	$3.2 \pm 1.3\%$	No Exp.	12 10 ⁻¹⁶		
$^{46}\text{Ti}(n,2n)^{45}\text{Ti}(\epsilon, 3.1 \text{ h}) \rightarrow ^{45}\text{Sc} \text{ (stable)}$	13.479	15.81	4.3±4.4%	No Exp.	15 10 ⁻¹⁶		
$^{27}Al(n,2n)^{26}Al(\varepsilon, 7.17\ 10^5\ y) \rightarrow ^{26}Mg(stable)$	13.550		2.0 (BVII.1)	No Exp.	7 10 ⁻¹⁶	AMS threshold ^W = 10^{-13}	
54 Fe(n,2n) 53 Fe (ϵ , 8.5 min) $\rightarrow ^{53}$ Mn (3.7 My)	13.629	16.48	1.2±5.1%	No Exp.	4 10 ⁻¹⁶	not for AMS ^W due to impact of ⁵⁴ Fe(n,np+d) ⁵³ Mn	
$^{209}\text{Bi}(n,3n)^{207}\text{Bi}(\epsilon, 31.6 \text{ y}) \rightarrow ^{207}\text{Pb} \text{ (stable)}$	17.416	17.88	$5.4 \pm 5.9\%$	No Exp.	19 10 ⁻¹⁶		
169 Tm(n,3n) 167 Tm (ϵ , 9.3 d) $\rightarrow ^{167}$ Er (stable)	14.963	18.20	4 ± 6.1%	No Exp.	14 10 ⁻¹⁶		
59 Co(n,3n) 57 Co (ϵ , 271 d) $\rightarrow ^{57}$ Fe (stable)	19.352	21.92	$0.017\pm7.7\%$	No Exp.	0.06 10 ⁻¹⁶		

Example of calculation for ²⁷Al(n,2n)²⁶Al: Ratio ²⁶Al/²⁷Al = Flux × Time × Sigma = 1.E+9 n/cm²/s × 3.6E+5 s × 2.E-30 cm² = 7.2E-16

Comments for Tables 1 and 2:

Italic font - reactions currently not included in IRDFF

1) Calculated SPA uncertainty includes only IRDFF-1.05 cross section uncertainty.

2) The known measurements are carried out by activation technique.

3) The most intensive 252 Cf sources known up to now:

K. Kobayashi et al. [JNST 19(1982)341] used 500 μ g of ²⁵²Cf which produced $\approx 1.10^9$ n/s; J. Czikai et al. [Antwerp (1982)418] used 40 μ g (?) of ²⁵²Cf which produced $\approx 1.10^8$ n/s (given 1 μ g = 2.3 10⁶ n/s);;

M. Blinov et al. [Atom. Energiya 65(1988)206] used 2-3 Cf sources of 18 - 50 μ g total mass or 0.4 - 1.2 10⁸ n/s (given 1 μ g = 2.3 10⁶ n/s);

4) The most intensive PFNS source:

KUR power fission plate: $\emptyset 27 \times 1$ cm, 1.1 kg of 90% ²³⁵U, incident thermal n-flux = 5.8 10⁸ n/cm² [I. Kimura and K. Kobayashi NSE106(1990)332] W) - information from private communication with A. Wallner

 $N_{\text{product}} / N_{\text{target}}$ - looks to be feasible for AMS

For other high energy reactions see: Cf-252(s.f.) <u>http://www-nds.iaea.org/IRDFFtest/IRDFF105_MCNP_Cf.pdf</u> U-235(n_{th},f) <u>http://www-nds.iaea.org/IRDFFtest/IRDFF_MCNPtest_U5.pdf</u>

Tables 1 and 2 show that it was impossible to measure so far some high threshold SPA by traditional activation technique with SPA below 150 - 400 µb.

SPA for these reactions, if they can be measured by activation or alternative methods, <u>will probe the unknown high energy part (i.e. above 8-10 MeV where</u> <u>uncertainties</u> $\approx 100\%$) of the ²⁵²Cf(s.f.) and ²³⁵U(n,f) spectra, since the dosimetry and some other reaction cross sections are known there with much better accuracy ($\leq 10\%$).

II. Techniques alternative to Activation

1. The Accelerator Mass Spectrometry (AMS) was shown is feasible to measure extremely small SPA.

The method sensitivity $N_{product}$ / $N_{target} \sim 10^{-12}$ - $10^{-16}.$

For more details see A. Wallner et al.:

- "Novel method to study neutron capture of ²³⁵U and ²³⁸U simultaneously at keV energies", <u>Phys. Rev Lett.112(2014)192501</u>
- "Precise measurement of the ²⁷Al(n,2n)^{26g}Al excitation function near threshold and its relevance for fusion-plasma technology", J.<u>Eur.Phys. A7, 285 (2003)</u> "Production of Long-lived Radionuclides ¹⁰Be, ¹⁴C, ⁵³Mn, ⁵⁵Fe, ⁵⁹Ni and ^{202g}Pb in a Fusion Environment" <u>J. Korean Phys. Soc. 59, 1378</u> "Nuclear Data from AMS & Nuclear Data for AMS – some examples", EPJ 35 (2012) 01003
- "Accelerator Mass Spectrometry & Neutron-induced Reactions", presentation at the IAEA TM on Standards (July 2013) here .
- A. Wallner pointed out on the following high threshold non-dosimetry reactions accessible for AMS:
- 27 Al(n,2n)²⁶Al was measured by AMS up to 19 MeV with accuracy 10% by A. Wallner et al., <u>Eur. Phys. A17, 285 (2003)</u>) 56 Fe(n,2n)⁵⁵Fe was measured by AMS around 14 MeV by A. Wallner et al. <u>J. Korean Phys. Soc.</u> 59, 1378);
- 238 U(n,3n)²³⁶U was measured by AMS at 14 MeV by X. Wang et al. <u>Phys. Rev. C87(2013)014612</u>).

The status of these reaction cross sections are shown in Figs. 3-5.

Fig 3. Available experimental and evaluated data for ${}^{27}Al(n,2n){}^{26}Al$.

Fig. 4. Available experimental and evaluated data for 56 Fe(n,2n) 55 Fe.

Fe-56(n,2n)

Fig. 5. Available experimental and evaluated data for 238 U(n,3n) 236 U.

2. Prompt Gamma Neutron Activation Analysis (PGNAA)

The method sensitivity $N_{product} / N_{target} \sim 100 \text{ ppm} = 10^{-4}$.

This technique was proved is capable to measure the non-threshold SPA cross sections

by employing the PGNAA facility of FRM-II after Ni foil irradiation in the LVR-15 reactor (fluence rate $3.10^{14} \text{ cm}^{-2}\text{s}^{-1}$) for reactions ${}^{62}\text{Ni}(n,\gamma){}^{63}\text{Ni}$ (T_{1/2} = 101.2 y, Atlas $\underline{\sigma(n_{\text{thermal}},\gamma) = 14.9 \text{ b}}$) and ${}^{58}\text{Ni}(n,\gamma){}^{59}\text{Ni}$ (T_{1/2} = 7.6 10⁴ y, Atlas $\underline{\sigma(n_{\text{thermal}},\gamma) = 4.37 \text{ b}}$).

For principles, first results and publications see:

V. Klupák, L. Viererbl, Z. Lahodová, J. Šoltés, I. Tomandl, P.Kudějová, "Nickel foil as transmutation detector for neutron fluence measurements", <u>ISRD-15</u>, <u>EPJ Web of Conferences 106</u>, 05013 (2016),

I. Tomandl, L. Viererbl, P. Kudějová, Z. Lahodová, V. Klupák, M. Fikrle, "Determination of trace concentrations of transmuted stable nuclides in TMD detectors using PGAA", J. of Radioanal. and Nuclear Chemistry, <u>300 (2014) 1141</u>.

3. Resonance Ionization Mass Spectroscopy (RIMS) - Isotope measurements based on Laser Spectroscopy.

The method sensitivity $N_{product} / N_{target} \sim ??$.

Currently under development for the trace analysis of short-lived and long-lived radioactive nuclei.

This technique was proved is capable to measure the cross section for dosimetry reaction

 93 Nb(n,n²) 93m Nb (T_{1/2} = 16.13 y).

For principles, first results and publications see:

here: http://coe.nucl.nagoya-u.ac.jp/Measurement01_E.html and

H. Tomita, T. Takatsuka, T. Iguchi, Y. Adachi, Y. Furuta, T. Takamatsu, T. Noto, "Development of Neutron Dosimetry Technique with ⁹³Nb(n,n")^{93m}Nb Reaction by Resonance Ionization Mass Spectrometry", <u>ISRD-15, EPJ 106, 05002 (2016)</u>

T. Takatsuka, H. Tomita, V. Sonnenschein, T. Sonoda, Y. Adachi et al. "Development of resonance ionization in a supersonic gas-jet for studies of short-lived and long-lived radioactive nuclei", <u>NIM B 317 (2013)586</u>

4. Ion Beam Analysis (IBA) technique such as PIXE, PIGE etc.

The method sensitivity $N_{product} / N_{target} \sim 10^{-4} - 10^{-3}$.

It seems will not be possible to use this technique to measure the high threshold SPA cross sections (< 1 mb) because of its low sensitivity however it may work, as PGNAA, for the non- threshold reactions with large SPA cross sections (> 1 b).

5. Nuclear magnetic resonance (??).

The method sensitivity $N_{product} / N_{target} \sim ??$.