NEA Nuclear Data High Priority Request List, HPRL

HPRL Main

High Priority Requests (HPR)

General Requests (GR)

Special Purpose Quantities (SPQ)

New Request

EG-HPRL
(SG-C)

Standard

Dosimetry



Request ID3 Type of the request High Priority request
TargetReaction and processIncident EnergySecondary energy or angleTarget uncertaintyCovariance
 94-PU-239 (n,f) prompt g  Thermal-Fast Eg=0-10MeV 7.5 Y
FieldSubfieldCreated dateAccepted dateOngoing actionArchived Date
 Fission LWR 28-APR-06 12-MAY-06 Y19-MAY-22

Send comment Send a comment on this request to NEA.

Requester: Prof. Gerald RIMPAULT at CAD-DER, FR
Email: gerald.rimpault@outlook.fr

Project (context): JEFF, NEA WPEC Subgroup 27

Impact:
The four fast reactor systems of GenIV feature innovative core characteristics for which gamma-ray heating estimates for non-fuel zones require an uncertainty of 7.5% [1]. For the experimental Jules Horowitz Reactor (RJH) at Cadarache a similar requirement appears [2]. Recent studies show evidence of discrepancies on integral measurement in MASURCA, EOLE and MINERVE, from which it is clear that the expectations for GenIV systems and the RJH thermal reactor are not met [3]. Gamma-ray energy release is dominated by Pu-239 and U-235.

Accuracy:
7.5% on the total gamma energy. 7.5% on the multiplicity.
Best accuracy achievable for the gamma spectrum shape.

Justification document:
Reference 1: G. Rimpault, Proc. Workshop on Nuclear Data Needs for Generation IV, April 2005, Antwerp, Belgium
Reference 2: D. Blanchet, Proc. M&C 2005, Int. Topical Meeting on Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, Sep. 2005, Avignon, France
Reference 3: 'Needs for accurate measurements of spectrum and multiplicity of prompt gammas emitted in fission', G. Rimpault, A. Courcelle and D. Blanchet, CEA/Cadarache - DEN/DER/SPRC.

Comment from requester:
Forty percent of the total gamma-ray energy release results from prompt decay of fission products. No comprehensive analytic expressions exist and Hauser-Feshbach model calculations are involved and presently lack sufficient knowledge to warrant a solution of the problem. New measurements would be needed to guide new evaluation efforts. Present evaluations are based on measurements from the seventies.

Additional file attached: HPRLgammafission.pdf

Review comment:
Discrepancies observed for C/E ratios in various benchmarks range from 10 to 28%. The request is well motivated and based on a considerable effort.

Entry Status:
Work in progress (as of SG-C review of May 2018)
Pending new evaluation or validation (as of SG-C review of June 2019)
Pending new evaluation or validation (as of SG-C review of May 2021) with recommendations for priority validation of the latest evaluations
Completed (as of SG-C review of May 2022) - The characteristics of the PFGS have been measured at thermal and fast energies for both U-235 and Pu-239. Experimental data have been combined with model calculations to evaluate the prompt gamma properties as a function of incident neutron energy for JEFF-3.3 and ENDF/B-VIII.0.

Main recent references:
Please report any missing information to hprlinfo@oecd-nea.org

Experiments

Theory/Evaluation

  • O. Serot et al., Prompt Fission Gamma Spectra and Multiplicities for JEFF-3.3, JEF/DOC-1828, JEFF Meeting, OECD, Paris (2017)
  • D. Brown et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, NDS 148 (2018) 1
  • I. Stetcu et al., Evaluation of the Prompt Fission Gamma Properties for Neutron Induced Fission of U-235,238 and Pu-239, NDS 163 (2020) 261
  • A. Tudora, Prompt gamma-ray results of two deterministic modelings of prompt emission in fission, Eur. Phys. J. A 56 (2020) 128