last modified: 29-APR-1993 | catalog | categories | new | search |

NESC0694 FRAPCON2, FRAP-S3/S1

FRAPCON2, Steady-State LWR Oxide Fuel Elements Behaviour, Fission Products Gas Release, Error Analysis
FRAP-S3 FRAP-S1, Steady-State LWR Oxide Fuel Elements Behaviour

top ]
1. NAME OR DESIGNATION OF PROGRAM:  FRAPCON2, FRAP-S3,FRAP-S1.
top ]
2. COMPUTERS
To submit a request, click below on the link of the version you wish to order. Only liaison officers are authorised to submit online requests. Rules for requesters are available here.
Program name Package id Status Status date
FRAPCON2 NESC0694/05 Tested 07-OCT-1982
FRAPCON2/V1M4 NESC0694/08 Tested 02-JUN-1993
FRAPCON2 NESC0694/09 Tested 05-JAN-1989

Machines used:

Package ID Orig. computer Test computer
NESC0694/05 CDC CYBER 174 CDC CYBER 174
NESC0694/08 CDC CYBER 176 DEC VAX 6000
NESC0694/09 DEC VAX 11/750 DEC VAX 8810
top ]
3. DESCRIPTION OF PROBLEM OR FUNCTION

FRAPCON2/V1M4 is the most recent in the FRAPCON series of fuel rod response modeling programs. FRAPCON series, like the earlier FRAP-S and GAPCON-THERMAL codes, is designed to predict the steady-state long-term burnup response of oxide fuel in light water reactors (LWRs). In addition, these codes  generate the initial conditions for transient fuel rod analysis by the FRAP-T or RELAP programs. FRAPCON2 calculates the temperature, pressure, deformation, and failure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include heat conduction through the fuel and cladding, cladding elastic and plastic deformation, fuel-cladding mechanical interaction, fission gas release, fuel rod internal gas pressure, heat transfer between fuel and cladding, cladding oxidation, and heat transfer from cladding to coolant. Material properties, water properties, and heat transfer correlation data are included.
top ]
4. METHOD OF SOLUTION

FRAPCON2/V1M4 iteratively calculates the interrelated effects of fuel and cladding temperature, rod internal  gas pressure, fuel and cladding deformation, release of fission product gases, fuel swelling and densification, cladding thermal expansion and irradiation-induced growth, cladding corrosion, and crud deposition as functions of time and fuel rod specific power. The calculation begins with processing of input data. Next, the initial fuel rod state is determined through a self-initialization calculation. Time is advanced according to the input-specified time- step size, a steady state solution is determined, and the new fuel rod state obtained. The new fuel rod state provides the initial state conditions for the next time step and these calculations are cycled in this manner for the user-specified number of time steps.
The solution for each time step consists of a calculation of the temperature of the fuel and cladding, a calculation of fuel and cladding deformation, and a calculation of the fission product generation, void volume, and fuel rod internal gas pressure. When the FRACAS-I mechanics model is selected, the fuel rod failure probability is calculated also. Each of the calculation is performed in a separate subcode.
top ]
5. RESTRICTIONS ON THE COMPLEXITY OF THE PROBLEM

FRAPCON2/V1M4 is limited to single-rod analysis with 11 radial nodes. FRAPCON2/V1M4 allows a maximum of 18 axial nodes and a maximum of 200 power time steps.
The thermal models of the code are based on steady-state data and equations, therefore, calculated temperatures will become progressively inaccurate as input power histories result in power ramp rates greater than 0.02 percent per second. Similary, the gas release models are based on steady-state data and do not reflect release rates for rapid power changes. All of the thermal and machanics modeling options assume an axisymmetric fuel rod. Large deformations with greater than 5 percent strain will not be traced well. If the PELET option is selected, power step changes greater that 1.0 KW/ft per time step should not be used.
top ]
6. TYPICAL RUNNING TIME

The running time varies with the number of time steps and the number of axial nodes specified. NESC executed the FRAPCON2/V1M4 sample problem in 195 CP seconds on a CDC CYBER170/875.
NESC0694/05
NEA-DB executed the test case on CYBER 174 in 277 CP seconds.

NESC0694/09
The test case included in this package ran at NEA-DB on a VAX 8810 computer in 77.7 seconds of CPU time.
top ]
7. UNUSUAL FEATURES OF THE PROGRAM:
top ]
8. RELATED AND AUXILIARY PROGRAMS

The FRAPCON series replaced the FRAP-S1, FRAP-S2, and FRAP-S3 series of programs. The fuel temperature computation used in the FRAPCON series was taken from the GAPCON-THERMAL2 code (NESC 618). FRAPCON2/V1M4 generates the initial conditions for transient fuel rod analysis used either by FRAP-T6 (NESC 658) or RELAP4/MOD7 (NESC 369).
NESC0694/05
MATPRO              Material Properties Package
top ]
9. STATUS
Package ID Status date Status
NESC0694/05 07-OCT-1982 Tested at NEADB
NESC0694/08 02-JUN-1993 Screened
NESC0694/09 05-JAN-1989 Tested at NEADB
top ]
10. REFERENCES

- Donald L. Hagrman and Gregory A. Reymann,
  Ed.,Matpro-Version 11 A Handbook of Materials Properties for Use
  in the Analysis of Light Water Reactors fuel Rod Behavior,
  NUREG/CR-0497 (TREE-1280) Rev. 1, February 1980.
- M.P. Bohn,
  FRACAS--A Subcode for the Analysis of Fuel Pellet-Cladding
  Mechanical Interaction,
  TREE-NUREG-1029, April 1977.
- FRAPCON2/V1M4, NESC No. 694.C176, FRAPCON2/V1M4 Tape Description
  and Implementation Information,
  National Energy Software Center Note 88-28, December 21, 1987.
NESC0694/05, included references:
- G.A. Berna and al.:
  FRAPCON-2: A Computer Code for the Calculation of Steady State
  Thermal-Mechanical Behavior of Oxide Fuel Rods.
  NUREG/CR-1845 R3  (January 1981).
- G.A. Berna, D.D. Lanning and W.N. Rausch:
  FRAPCON-2 Developmental Assessment. NUREG/CR-1949 (July 1981).
- D.L. Hagrman, G.A. Reymann and R.E. Mason:
  MATPRO - Version 11(Rev. 1): A Handbook of Materials Properties
  for Use in the Analysis of Light Water Reactor Fuel Rod Behavior.
  NUREG/CR-0497 (Feb. 1980).
NESC0694/08, included references:
- G.A. Berna et al.:
  FRAPCON-2 "A Computer Code for the Calculation of Steady State
  Thermal-Mechanical Behavior of Oxide Fuel Rods"
  NUREG/CR-1845 (January 1981).
- Donald L. Hagrman et Al.:
  MATPRO-Version 11 (Revision 1) - A Handbook of Materials
  Properties for use in the Analysis of Light Water Reactor Fuel Rod
  Behavior
  NUREG/CR-0497 TREE-1280 (Rev. 1) , (February 1980).
- G.A. Berna et al.:
  FRAPCON-2 - Developmental Assement
  NUREG/CR-1949 (July 1981).
- P. Johnson:
  FRAPCON2/V1M4 Tape Description and Implementation Information
  NESC Note 88-28 (December 31, 1987).
- W.N. Rausch and D.D. Lanning:
  FRAPCON-2 Changes in Order to Create FRAPCON-2/V1M4
  Battelle Memorandum  (February 7, 1983).
NESC0694/09, included references:
- G.A. Berna and al.:
  FRAPCON-2: A Computer Code for the Calculation of Steady State
  Thermal-Mechanical Behavior of Oxide Fuel Rods.
  NUREG/CR-1845 R3  (January 1981).
- G.A. Berna, D.D. Lanning and W.N. Rausch:
  FRAPCON-2 Developmental Assessment. NUREG/CR-1949 (July 1981).
- D.L. Hagrman, G.A. Reymann and R.E. Mason:
  MATPRO - Version 11(Rev. 1): A Handbook of Materials Properties
  for Use in the Analysis of Light Water Reactor Fuel Rod Behavior.
  NUREG/CR-0497 (Feb. 1980).
top ]
11. MACHINE REQUIREMENTS

307,700 (octal) words of storage are required for FRAPCON2/V1M4 (CDC CYBER170).
FRAPCON2 (NESC0694/05): 247,000 octal words on CDC CYBER 174.
FRAP-S3 (NESC0694/06): 141,700 octal words of SCM and 206,000 octal  words of LCM on CDC 7600.
top ]
12. PROGRAMMING LANGUAGE(S) USED
Package ID Computer language
NESC0694/05 FORTRAN-IV
NESC0694/08 FORTRAN-IV
NESC0694/09 FORTRAN
top ]
13. OPERATING SYSTEM UNDER WHICH PROGRAM IS EXECUTED:  NOS 2.2 (CDC CYBER170,875), NOS/BE (CDC CYBER176).
NESC0694/05
Test case execution under NOS 1.4-531.

NESC0694/09
VMS V5.0-1 (VAX 8810).
top ]
14. OTHER PROGRAMMING OR OPERATING INFORMATION OR RESTRICTIONS

The FRAPCON2 plot option requires graphics routines not supplied with the package. The INEL library and IGS graphics system routines EXITG, GRIDG, LABELG, LEGNDG, LINESG, MODESG, NUMBRG, OBJCTG, PAGEG, RSETMG, SETSMG, SETUPG, SUBJEG, and TITLEG will have to be replaced  with locally-equivalent routines. The plot information is stored on  logical unit TAPE17 by FRAPCON2 and processed by the plotting routines which generate TAPE10 as plot output. TAPE10 is used at INEL to generate plots on the Information International Incorporated FR80 microfilm recorder or Calcomp plotting equipment.
   To run FRAPCON2/V1M4 memory must be preset to negative infinity.
In different computing environment the SEGLOAD directives can be modified to optimize execution time.
top ]
15. NAME AND ESTABLISHMENT OF AUTHOR

               W.N. Rausch, R.E. Williford, and
               D.D. Lanning
               Pacific Northwest Laboratory
               P.O. Box 999
               Richland, Washington 99352

               G.A. Berna and M.P. Bohn
               EG&G Idaho, Inc.
               P.O. Box 1625
               Idaho Falls, Idaho 83415
top ]
16. MATERIAL AVAILABLE
NESC0694/05
File name File description Records
NESC0694_05.003 FRAPCON2 INFORMATION FILE 54
NESC0694_05.004 FRAPCON2 MAIN SECTION SOURCE (FORTRAN-4) 15548
NESC0694_05.005 FRACAS-II SUBROUTINES (FORTRAN-4) 2191
NESC0694_05.006 PELET/RADIAL SUBROUTINES (FORTRAN-4) 3814
NESC0694_05.007 AXISYM SUBROUTINES (FORTRAN-4) 2553
NESC0694_05.008 MATPRO MATERIAL PROPERTIES PACKAGE 5018
NESC0694_05.009 GRASS SUBROUTINES (FORTRAN-4) 1700
NESC0694_05.010 FAST GRASS SUBROUTINES (FORTRAN-4) 1278
NESC0694_05.011 PLOTSR SUBROUTINES (FORTRAN-4) 230
NESC0694_05.012 FRAPCON2 INPUT FOR TEST CASE 1 30
NESC0694_05.013 FRAPCON2 OVERLAY DIRECTIVES 14
NESC0694_05.014 FRAPCON2 JCL FOR TEST CASE 47
NESC0694_05.015 FRAPCON2 OUTPUT OF TEST CASE 1 1943
NESC0694/08
File name File description Records
NESC0694_08.001 Information file 55
NESC0694_08.002 FRAPCON2/VIM4 main section UPDATE form 14375
NESC0694_08.003 FRACAS2 deformable pellet mechanics subr. 2200
NESC0694_08.004 PELET/RADIAL mechanics model sburoutines 3635
NESC0694_08.005 AXISYM FEM model subroutines 2591
NESC0694_08.006 MATRPO material properties package 5108
NESC0694_08.007 GRASF fission gas release subroutines 1353
NESC0694_08.008 FRPLT Plotting subroutines 233
NESC0694_08.009 Test case 1 input data 22
NESC0694_08.010 Test case 2 input data 23
NESC0694_08.011 Segment load directives 14
NESC0694_08.012 FRAPCON2/V1M4 UPDATEd file 15654
NESC0694_08.013 FRACAS2 UPDATEd file 2195
NESC0694_08.014 PELET UPDATEd file 3812
NESC0694_08.015 AXISYM UPDATEd file 2553
NESC0694_08.016 MATPRO UPDATEd file 5046
NESC0694_08.017 GRASF UPDATEd file 1347
NESC0694_08.018 FRPLT UPDATEd file 230
NESC0694_08.019 Test case 1 printed output 3623
NESC0694_08.020 Test case 2 printed output 5046
NESC0694/09
File name File description Records
NESC0694_09.001 Information file 57
NESC0694_09.002 FORTRAN source 32570
NESC0694_09.003 Input data 29
NESC0694_09.004 Output list 3545
NESC0694_09.005 Command procedure used for testing 8
NESC0694_09.006 Command procedure supplied by the author 30
top ]
17. CATEGORIES
  • G. Radiological Safety, Hazard and Accident Analysis
  • H. Heat Transfer and Fluid Flow

Keywords: deformation, fuel rods, mechanical properties, pressure, reactor safety, steady-state conditions, temperature, water cooled reactors.