last modified: 11-OCT-1985 | catalog | categories | new | search |

NESC0514 FORSIM

FORSIM, Solution of Ordinary or Partial Differential Equation with Initial Conditions

top ]
1. NAME OR DESIGNATION OF PROGRAM:  FORSIM
top ]
2. COMPUTERS
To submit a request, click below on the link of the version you wish to order. Only liaison officers are authorised to submit online requests. Rules for requesters are available here.
Program name Package id Status Status date
FORSIM NESC0514/02 Tested 01-FEB-1978

Machines used:

Package ID Orig. computer Test computer
NESC0514/02 IBM 370 series IBM 370 series
top ]
3. DESCRIPTION OF PROBLEM OR FUNCTION

FORSIM is a  FORTRAN oriented
simulation  program  which  automates   the  continuous  transient
solution  of  systems  of  ordinary  and/or  partial  differential
equations.  The user writes his equations in a FORTRAN subroutine,
following prescribed rules, and loads  this routine along with the
executive routines.  The  executive routines then read  in initial
data supplied by the user and proceed with the integration.
top ]
4. METHOD OF SOLUTION

Partial differential equations  are converted
to   coupled   ordinary   differential   equations   by   suitable
discretization formulae.   Integration is done by  variable order,
variable step-size error controlled algorithms.
top ]
5. RESTRICTIONS ON THE COMPLEXITY OF THE PROBLEM:  Maximum of -, 1000 ordinary differential equations
top ]
6. TYPICAL RUNNING TIME

The time  required depends on  the equation
system being solved.
top ]
7. UNUSUAL FEATURES OF THE PROGRAM

Partial  differential  equations
and  boundary  conditions  are   discretized  automatically.   The
statement  of  a   partial  differential  equation  in   the  user
subroutine is analogous to the mathematical function.
   Edition B  of FORSIM  contains options  for the  integration of
stiff  systems of  ordinary differential  equations and  automated
procedures  for  solving  most  classes  of  partial  differential
equations as well.
top ]
8. RELATED AND AUXILIARY PROGRAMS:
top ]
9. STATUS
Package ID Status date Status
NESC0514/02 01-FEB-1978 Tested at NEADB
top ]
10. REFERENCES

M.  B. Carver,  FORSIM:  A  FORTRAN Package  for  the
Automated Solution of Coupled Partial and/or Ordinary Differential
Equation Systems, AECL-4844, November 1974.
NESC0514/02, included references:
   - M. B. Carver, D. G. Stewart, J. M. Blair, and W. N. Selander;
     FORSIM: VI - A FORTRAN-Oriented Simulation Package for the
     Automated Solution of Partial and Ordinary Differential
     Equation Systems. AECL-5821 (Revised May 1979).
top ]
11. MACHINE REQUIREMENTS

160,000 (octal)  memory and  6 disk  files,
including input and output
top ]
12. PROGRAMMING LANGUAGE(S) USED
Package ID Computer language
NESC0514/02 FORTRAN-IV
top ]
13. OPERATING SYSTEM UNDER WHICH PROGRAM IS EXECUTED:   SCOPE 3.4.
top ]
14. OTHER PROGRAMMING OR OPERATING INFORMATION OR RESTRICTIONS

   The
user  writes  in FORTRAN  and  has  full  command of  all  FORTRAN
facilities.  Any number of subroutines  may be written to describe
the equations.
   The CalComp plot option (p. 25 of reference) may not be invoked
because  it requires  local  AECL software.   A  dummy routine  is
included  with the  source to  satisfy the  loader.  However,  the
printer plot option does operate.
top ]
15. NAME AND ESTABLISHMENT OF AUTHOR

                 M. B. Carver
                 Mathematics and Computation Branch
                 Chalk River Nuclear Laboratories
                 Atomic Energy of Canada Limited
                 Chalk River, Ontario, Canada
top ]
16. MATERIAL AVAILABLE
NESC0514/02
File name File description Records
NESC0514_02.001 DUMMY RECORD 1
NESC0514_02.002 SOURCE PROGRAM (F4,EBCDIC) 4421
NESC0514_02.003 OVERLAY CARDS 12
NESC0514_02.004 SAMPLE PROBLEM INPUT DATA 9
NESC0514_02.005 SAMPLE PROBLEM PRINTED OUTPUT 330
NESC0514_02.006 SUBROUTINES NOT USED IN SAMPLE PROB.(F4) 292
top ]
17. CATEGORIES
  • P. General Mathematical and Computing System Routines

Keywords: integrals, ordinary differential equations, partial differential equations.