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Abstract

The on-line stability of BWR and PWR is studied using neutron noise signals as
the fluctuations reflect the dynamical characteristics of the reactor. Using appropriate signal
modelling for time domain analysis of noise signals, the stability parameters can
be obtained from the system impulse response directly. Here in particular for BWR,
an important stability parameter is the decay ratio (DR) of the impulse response. The time
series analysis involves the autoregressive modelling of the neutron detector signal and
the DR determination is strongly effected by the low frequency behaviour since the transfer
function characteristic tends to be a third order system rather than a second order system
for a BWR and low frequency behaviour is modified by the Boron concentration in PWR.
As a result, there are difficulties in consistent determination of the DR oscillations.
Hence, the enhancement of the consistency of the DR estimation is aimed by wavelet
transform using actual power plant data from BWR and PWR. A comparative study
of the estimation with and without wavelets is presented.



Introduction

As a dynamic process system, stability is an important concern in control and operation
of a nuclear reactor. From the design view point, such stable systems may be conceived
so that they can exercise some incidental operational occurrences due to situations known
as dynamic instabilities. Basically, this is due to time lag involved in a reactivity feedback.
Nevertheless for PWRs, the stable regions established by the reactivity coefficients
are rather well defined and the reactivity disturbances lead to limited power response.
Some instability concerns might be due to low boron concentrations by the end of the fuel
cycle. However, the issue is essentially important for boiling water reactors due basically
to interaction between thermal hydraulics and neutronics, caused by the reactivity effect
of steam bubbles and the time lag between a reactivity change and the corresponding
change in steam void fraction due to power change. Added to this, mention may be made
to the two-phase flow instabilities resulting in a peculiar thermohydraulic behaviour termed
as density-wave oscillations.

Motivated by the stability considerations briefly mentioned above, there is a large
amount of research reported in the literature especially for BWRs relative to PWRs.
There are two aspects of these researches. On one hand is the early primary investigations
to identify the underlying physics of the phenomena leading to instabilities. On the other
hand, it is important to have the necessary information on the causes of instability
and establish suitable means to monitor the system even in real-time. An important finding
of these researches is that reactor neutron noise signals for the stability analysis
and monitoring can be used so that the perturbation of the system in one way or other
is circumvented. This means that continuous monitoring by these signals is possible.
In this context, the conventional approach is the utilisation of the advanced signal modelling
techniques. In the last two decades, with the aid of computer technology, such methods
are intensively used in nuclear industry not only for reactor stability but also for general
reactor analysis. The neutronic fluctuations reflect the dynamical characteristics of
the reactor and in particular in BWRs they are additionally due to steam content change
in the core exciting the system. The early researches with noise signals revealed that
the BWR can reasonably be characterised as a second-order damped system with relevant
characteristic quantities being defined.

The time series model is a causal representation of the dynamic behaviour
of the system so that the dynamic character of the plant is thus effectively represented.
Here, an important stability parameter is the decay ratio (DR) of the impulse response.
Decay ratio is defined as the ratio of two consecutive maxima of the impulse response.
For a second-order system, this ratio is constant during the course of the impulse response
and it is also equal to two consecutive maxima of the autocorrelation function (ACF).
Exploiting these features, stability determination for BWRs is endeavoured by several
authors with a qualified success [1-3]. The same applies to PWRs [4]. In particular,
the qualification stems from the fact that, reactor is not strictly a second-order system
and even its global characteristic is more third-order rather than second-order for a BWR
and from this viewpoint validity of a second-order system assumption for PWR is hardly
justified. However, another important factor in such determinations is the method in use.
Among the outstanding methods mention may be made of time-series analysis, spectral
decomposition and neural networks. To pin down the problems a brief introduction is
appropriate here.



The majority of time series analysis methods use autoregressive (AR) model for
the impulse response acquisition where the signal is modelled for model order p and p+1 of
the form
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where ai and ai
* are the model parameters which are known as AR parameters; εp(k)

and εp
*(k) are white noise sequences. If we multiply Eq. (1) and Eq. (2) by yk and take
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The AR coefficients a*
i can be expressed in terms of ai by means of Levinson-Durbin

recursive algorithm. The recursion is of the form
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where a0 = 1 and gp+1 is known as reflection or parcor coefficient defined by
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so that the residual variances σ
p2  and σ

p+12 are related to one another through

the reflection coefficient of the form
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Above, σ
o2  is the variance of the incoming raw data sequence. It is noteworthy

to mention that, since both σ
p+12  and σ

p2  are positive, it follows that the factor ( )1
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p
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be positive and less than unity. It represents the improvement in the prediction afforded
by using a predictor of the order p+1 instead of order p. Another noteworthy point is that
gp+1 has magnitude less than one and this is an indication of the stationarity of the signal.

The estimation of the impulse response function on the basis of this model
i.e., univariate AR, is given by
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The initial conditions being set to

hm = 0 for m< 0 and ho = 1 (8)

For DR estimation, the problems encountered here are the excessive model orders
(model order of 50 for a second-order system, for instance) due to low frequency effects
at the measured spectrum. The same problem applies to the autocorrelation and
the spectral decomposition analyses methods using multivariate AR or fast Fourier
transform analysis. This is because of the model errors and the measurement errors
and the systematic errors introduced during the signal processing (windowing in spectrum
estimation, finite block size effects in correlation estimation, for instance). Concerning
neural networks, the case is not fully under control due to the lack in the actual data needed
for training. Added to this, the degree of the nonlinearity of the neural structure
is dependent on the number of hidden layer nodes so that matching the nonlinearity
of the neural structure to the nonlinearity of the functional relationship to be established
is an important issue with regard to the performance of this approach. Some elaborations
are imperative.

From the above discussion, one may note that the stability determination based
on the decay ratio computation apparently is not totally satisfactory as the method may
not always be conclusive due to both model errors and measurement errors, while it needs
careful and lengthy measurements and signal processing. Therefore, in this research,
studies on novel utilisation of neutron noise signals for stability monitoring is described.
In this novel approach, a new signal analysis method called “wavelets” is used. “Wavelets”
collectively indicates a new technology in the field of signal analysis and its use in nuclear
technology is exemplified [5] and suggested [6].

The organisation of the paper is as follows. To start with, wavelet analysis is briefly
outlined and we give basic definitions and properties related to wavelet analysis including
discrete bases for signal decomposition and reconstruction which constitute the essential
signal processing part of the work. Then, general wavelet approach for stability analysis
is described. Afterward, the application of the method to BWR and PWR signalsis
examined. At the end of the paper, a few concluding remarks are offered.

Wavelet analysis

In contrast to Fourier analysis in frequency domain and time series analysis in time
domain, wavelet analysis is used to analyse the signal in both time and frequency domains.
By doing so, a signal is decomposed to some components corresponding to different
frequency ranges and each component is further considered with a resolution matched
to its scale. The continuous wavelet-transform (CTWT) is defined as the inner product of f(t)
with the basis functions
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where ψ is referred to as mother wavelet and a and b are, respectively, scale and shift
parameters. The Fourier coefficients of the wavelet transform are obtained from
the equation

W a b a f a( , ) ( ) ( )/= 1 2 ω ψ ω (11)

The computation of the continuous wavelet transform by the discretisation
of the integral term is not a general approach due to high cost of computations and
the large errors arising at small scales. For continuous time computation, Eq. (11)
is generally used.

The basis functions ψa,b∈L2(R) are real and oscillating. They are called wavelets
and can be viewed as contracted and shifted versions of the function ψa,b(t). The function
ψ(t) has to satisfy the admissibility condition
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in order to be able to reconstruct f(t) from its CTWT. ψ(ω) above is the Fourier transform
of ψ(t). The reconstruction formula is
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In CTWTf(a,b) the parameters a,b vary continuously. It is possible to discretise
the values for a and b, while still being able to reconstruct the signal from its transform.
For this we substitute

a ao
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i= , ij ∈ Z, ao > 1, bo ≠ 0 (14)

The corresponding wavelets for the discretised a and b are
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so that the wavelet transform becomes
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In order to clearly present what role wavelets play in the stability analysis, first we recall
the mathematical foundations i.e., multiresolution analysis and orthogonal wavelet bases.



A multiresolution analysis of a function f consists of estimation a series of functions fj
corresponding different representations of that signal where j represents the detail index
of size 2-j. These estimates converge to f when j tends to infinity. This can be best
described by the theory of function spaces. A multiresolution analysis is a description
of L2(R) as a hierarchy of embedded subspaces Vm which have intersection {0} and for
which the limit of their union is L2(R); namely

...⊂ V2 ⊂ V1 ⊂ Vo ⊂V-1 ⊂ V-2 ⊂...

verifying the following properties [7-9]:

(i) ∩j∈Z Vj = {0}    ∪j∈Z Vj = L2(R)

(ii) f∈ Vj ⇔ f(2-j) ∈ Vj+1, j∈Z

(iii) f∈ Vo ⇔ f(2.-k) ∈ Vo, k∈Z

(iv) There exists Φ∈Vo so that {Φ(t-k)}k∈Z is an orthonormal base of Vo.

As the functions Φo,j(t) form an orthonormal basis for Vo, it follows that the functions
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constitutes an orthonormal basis for Vi. These basis functions are referred to as scaling
functions since they build up scaled versions of the functions in L2(R). From the
multiresolution analysis introduced one realises that a function f(t) in L2(R) can be seen
as a successive approximation by functions fi(t) in Vi. Hence, the function f(t) is the limit
of the approximations fi(t) ∈ Vi for i to -∞, namely
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This creates the possibility to examine the function or signal at several resolutions
or scales. The variable i indicates the scale and therefore called the “scale factor”.
If the scale factor is high, this means the function in Vi is coarse approximation of f(t),
the details being neglected. On the contrary, if the scale factor is low, a detailed
approximation of f(t) is achieved. All functions in Vi can be represented using linear
combinations of the scaling functions. Hence one can see that fi(t) is an orthogonal
projection of f(t) onto Vi, of the form
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For a specific sequence hj, we can write
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so that Φ0,0(t) is a solution of a two-scale difference equation indicating the close
relationship between the function Φ(t) and the sequence hj.

In the above definition we can assume that the space L2(R) is built up the set of rings
that are differences between two consecutive spaces. These difference spaces are denoted
by Wi with respect to Vi-1 so that

V V Wi i i− = ⊕1 (21)
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where ⊕ indicates the summation of the orthogonal spaces. The Wj spaces verify
the following properties.

(i) f∈W j ⇔ f(2-j.) ∈ Wo, j∈Z

(ii) ψ∈Wo ⇔ ψ(.-k)∈Wo, k∈Z

(iii) W i is orthogonal to Wj for i ≠ j

(iv) ⊕j∈ZW j = L2

Let ψ(t) = ψo,o(t) be a basis function of Wo. Since ψo,o(t) ∈ Wo ⊂ V-1 we can write
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for a certain sequence of gj. The functions Φi,j(t) are shifted and dilated versions of each
other. Therefore, we can also define functions ψi,j(t) that are shifted and dilated versions
of one prototype function ψ(t), of the form

ψ ψi j
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The functions ψi,j(t) are identical to the wavelets introduced earlier after
the discretisation of Eq. (14). The parameter ao in Eq.(15) is fixed and equal to 2 in this
case. They form an orthonormal basis for L2(R).

The wavelet transform algorithm carries out the multiresolution decomposition
as follows. Let Φ be the scaling function. At step j, we have the signal fj which belongs
to the space of approximations Vj and its coefficients cj,k on the bases of Vj. Then, using
the equation Vj=Vj-1⊕ W j-1 we compute its projection fj-1 on Vj-1 where, in particular, dj-1,k are
coefficients on the bases of Wj-1 and cj-1,k are coefficients on the bases of Vj-1.
The coefficients cj-1,k and dj-1,k are obtained by respectively applying a low-pass filter H and
a high-pass filter G to the sequence cj-1,k [5].



Improved decay-ratio estimation by wavelet analysis

Utilisation of wavelet approach for stability analysis is due to low frequency effects
in the power spectral density of the signal from the neutron detectors. Particularly for BWRs
the DR determination is strongly effected by the low frequency behaviour since the transfer
function characteristic tends to be a third-order system rather than a second-order system.
The same effect to a lesser extent is for PWRs the effect being attributed to diminished
boron concentration at the end of the fuel cycle. By means of wavelet transform the low
frequency part of the spectrum is replaced with a flat spectrum, i.e. gaussian white, in order
to eliminate the low frequency effects. To this end, initially, a discrete band-limited white
noise signal is considered. This can easily be formed by means of a suitable algorithm
and a built-in noise generator in a computer. This signal is decomposed by means
of wavelet transform into several signal components matching to their individual
multi-resolution scale of frequency. In the same way the detector signal is subjected
to the same wavelet decomposition as well. Depending on the width of the low frequency
part one would intend to replace, the scale of the signal’s multi-resolution subject to this due
replacement, is replaced with the counterpart of that from the white noise. The computation
is rather straightforward due to one-to-one replacement. However, in order not to modify
the original signal beyond the intention, perfect reconstruction from the wavelet analysis
is required. Therefore here in the analysis, for orthogonal wavelets specifically,
Daubechies’s wavelets with a compact support length of 12 are used.

Application to BWR and PWR

Wavelet-based decay ratio estimation described above is implemented to the recorded
data from two operating nuclear power plants of the Netherlands, namely, Dodewaard BWR
(58 MWe) and Borssele PWR (450 MWe) introducing the data throughout the on-line data
acquisition and processing systems at the Netherlands Energy Research Foundation (ECN)
site.

Dodewaard BWR is a small-sized BWR with natural convection circulation and
has been operating since 1968 by GKN (Gemeenschappelijk Kerncentrale Nederland).
For the DR investigations using on-line DR measurements (on 8 November 1989)
a demonstration experiment with ECN on-line data acquisition and data analyses system
is carried out at Dodewaard reactor. Among the various reactor signals that were measured,
signals of four ex-core neutron detectors of safety channels are used for real-time
DR calculation. The monitored signals, spectra, and impulse responses derived
by univariate autoregressive method and the DR in real-time displayed for the reactor
supervisors and to the members of Dutch Nuclear Safety Authority [10], thereby, a stability
monitoring based on real-time on-line decay-ratio computation is thus realised and launched
for operation for actual use with endorsement. In this wavelet application, a small part
of the recorded noise signals of the ex-core neutron detector (N-6) from that experiment
is used. Sampling period of the data used in the experiment was selected as 16 (s/s).
The analysis of the same data with wavelet is shown in Figures 1 (a-d) where respectively,
impulse response, step response, power spectrum from AR modelling and DR estimation
are shown. The model order in this case is as low as 6, data block length is 128 which
is intentionally low for real-time and on-line DR estimations. Decay ratio resulting from this
analysis through the wavelet application is verified with the on-line DR estimation [10].



The Dodewaard reactor is a very stable BWR at the complete fuel cycle of operation,
with the DR between 0.10-0.35. The functionality of wavelet analysis and the improvement
achieved by wavelet is clearly demonstrated.

The outcomes of the same studies for PWRs is presented in Figures 2 (a-f), where
the plant is Borssele NPP in the Netherlands. The Borssele PWR is a two loop system built
by KWU and operated by N.V. Electriciteits-Productiematschappij Zuid Nederland EPZ
since 1973. On-line experiments have been carried out since 1982 for monitoring,
surveillance and diagnostics research and implementation purposes [11]. For this wavelet
investigation we used noise signals of the ex-core neutron detector (D621) during
the nominal reactor power at the beginning of the operating fuel cycle (boron concentration
at 910 ppm) and at the end of fuel cycle (20 ppm). Noise data of the sensory signals are
sampled with 8 samples/second. The illustrations involved two different operational
situations; namely operation data at the beginning of the fuel cycle and at the end
of the fuel cycle. Wavelet conditions and AR signal modelling conditions are kept the same
as those of BWR studies described. Here there is no obvious change by wavelet due
to the intrinsically flat spectrum of PWR at the low frequencies. Decay ratio is found
to be as relatively low as one would expect.

Conclusion

Real-time decay ratio estimation is important for monitoring the stability of a BWR.
Among the decay ratio estimations by conventional means, i.e. autocorrelation (ACF)
method, spectral decomposition and time-series signal modelling, only the latter is
of interest while the others are especially suitable for off-line estimations. Neural network
approach is quite suitable for real time estimations but the method is not mature enough
for consideration here, or conclusive assessments. In the time-series signal modelling
approach a block of data is considered at each time for modelling and thereafter
DR estimation while statistical variations play an important role regarding the estimations.
The situation is aggravated in the case in which the data block is short. In contrast with this,
short length of data is preferable for real-time operations. Referring to these conflicting
qualifications accurate estimates by signal modelling becomes an issue of optimal design
of a measurement. The case is more hampered if the model errors are also an important
factor on the parameter determination as this is the case in DR estimation due to second-
order system approximation. Referring to these, the estimation is highly improved
by the utilisation of wavelet transform for BWR case. For PWR, such improvement is found
not to be obvious for the same conditions used during the investigations for BWR.
However, for increased block length of data, the DR estimations are found to be improved
and also in the case of PWRs, wavelets can still be of substantial help for accurate
estimations.
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Figure 1: Wavelet approach for DR estimation of BWR
Broken lines indicate the outcomes of conventional analysis counterpart

(a) Impulse response, (b) Step response, (c) Power spectrum, (d) Decay ratio



Figure 2: Wavelet approach for DR estimation of PWR
Broken lines indicate the outcomes of conventional analysis counterpart

(a) Impulse response, (b) Power spectrum, (c) Decay ratio abtained at the beginning of fuel cycle.
The Figures d,e,f are obtained at the end of the fuel cycle and

they are the counterpart of Figures a,b,c respectively


