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Abstract

The spin-orbit interaction obtained in optical model (OM) searches on nucleon-nucleus scattering is reviewed.
Although some single-energy OM search results are given, the main focus is on global OMs that incorporated a
reasonable amount of polarization data. A corrected table of the Walter-Guss (WG) OM parameters is included.
An outline of neutron Ay(θ) experimental method of the TUNL group is presented, along with an overview of
TUNL projects for interpreting the Ay(θ) data: i) the WG optical model, ii) the dispersive optical model, and
iii) the microscopic model.

I. Introduction

The present paper will stress three topics related to the optical model for nucleon-nucleus scattering for
energies above 10 MeV. First, a review of global optical models for neutron and proton scattering in the 10 to
180 MeV region, with an emphasis on polarization data and the nature of the spin-orbit interactions presented.
Second an overview of neutron polarization measurements conducted at the Triangle Universities Nuclear
Laboratory (TUNL) and a presentation of sample proton polarization data is given. Third, a discussion of
several of the approaches used at TUNL to interpret the neutron polarization data is reported. Because the
length of the present paper is restricted, the descriptions on all of the topics necessarily will be brief and
incomplete; we do not pretend to present all the important work on polarization measurements or optical
models here. An introduction to the optical model (OM) concept and a fairly comprehensive review of OM
work prior to 1971 is given in Hodgson’s textbook [1]; a compilation of OM parameters for the early 1970s is
given in the report by the Pereys [2]. A concise summary of the isovector terms of the OM potential connecting
neutron scattering to proton scattering and (p,n) reactions is presented in Rapaport’s OM review [3].

Measurements of the analyzing power Ay(θ) for nucleon scattering from nuclei have provided sensitive
information about the nature of the nucleon-nucleus spin-orbit interaction. This interaction potential is known
to have a real and an imaginary part. Below 60 MeV the imaginary part is small and has a negligible effect on
the differential cross section σ(θ). However, the real part has an important influence on the σ(θ) in this energy
range, as evidenced by large analyzing powers for neutron scattering above a few MeV and for proton
scattering at energies where Coulomb scattering does not dominate, i.e., for E > 7 MeV for medium-weight
nuclei and for E > 20 MeV for heavy nuclei.



The present paper presents a sample of neutron-nucleus polarization data for neutron energies 5 ≤ En ≤ 17
MeV and for proton energies 16 ≤ Ep ≤ 180 MeV. The measurements of our group, which fall into the former
category, are more difficult to perform than proton measurements since: i) there are no direct sources of
polarized neutron beams in contrast to the case for proton beams obtained with atomic-beam polarized ion
sources; ii) compared to proton detectors, which have 100% efficiency, neutron detectors used in polarization
studies typically have less than 30% efficiency; iii) neutron spectrometry is very inefficient, normally requiring
pulsed-beam time-of-flight methods. This accounts for the scarceness of neutron polarization data and the large
statistical uncertainties for neutron data compared to proton data. A very brief description about the neutron
time-of -flight method at TUNL will be presented.

II. Review of global optical models and spin-orbit term

Early phenomenological optical models for neutrons, like the one Wilmore and Hodgson [4] provided in
1964, ignored the spin-orbit interaction because the emphasis was to provide a model that described (and
predicted) the main features of neutron scattering cross sections. In fact, there were insufficient neutron
polarization data to constrain the magnitude and the energy dependence of the spin-orbit interaction at this
time. In 1963 Perey [5] produced an OM for 27 ≤ A ≤ 197 for 9 ≤ Ep ≤ 22 MeV which incorporated some
polarization data and which provided much understanding and groundwork for global optical models. Perhaps
the most classic work [6] is that reported in 1969 by Becchetti and Greenlees (BG) for A > 40 for 7 ≤ Ep ≤ 40
MeV and for 1 ≤ En ≤ 24 MeV. It provided the parameters for many reaction calculations since its publication.
Although today their OM is known to be an inaccurate predictor for neutron scattering σ(θ) and Ay(θ)
distributions within its expected range of applicability, it is still often used for neutrons because of its simplicity
and its acceptance over the past three decades for proton-induced reactions. The determination of the spin-orbit
interaction by BG was based solely on proton analyzing power measurements. In 1979 Rapaport, Kulkarni and
Finlay [7] reported a neutron-nucleus model for 40 ≤ A ≤ 208 based on σ(θ) data from 7 to 26 MeV and
adopted the BG spin-orbit interaction because no polarization data were included.

Shortly after the BG report appeared, Menet et al. [8] from ORNL published a proton OM for
30 ≤ Ep ≤ 60 MeV that heavily weighted their own total reaction cross sections and on ORNL σ(θ) and Ay(q)
data. They used the spin-orbit parameters taken from an earlier analysis of the σ(θ)and Ay(θ) by two of the
same authors.[9] In 1982 Schwandt et al. [10] measured Ay(θ) for protons at a few energies in the energy range
between 60 and 180 MeV for seven nuclei in the range 24 ≤ A ≤ 208. Combining these data with their σ(θ)
data, Schwandt et al. conducted an OM search to obtain a model for protons over this energy range. It is
noteworthy that by 180 MeV the depth of the real central potential has dropped to about 18 MeV (from about
50 MeV at Ep=0) and the strength of the real spin-orbit has dropped to about 2.5 MeV (from about 6 MeV at
Ep=0 MeV), but the magnitude of the imaginary spin-orbit strength has increased to about 2 MeV. Thus, at 180
MeV (and higher) the spin-orbit interaction has a large influence on the scattering process, e.g., the cross
section. The Ay(θ) has changed from a function that strongly oscillates through a value of 0.0 to a function that
has small oscillations between values in the localized region from +0.8 and +1.00. In fact, the data of [10] was
key to recognizing the need for incorporating the imaginary part Wso(E) of the spin-orbit interaction. This term
usually had been neglected in OM potentials prior to their work.

Two more recent “global” optical models that focused heavily on polarization data deserve mention here.
In 1985 Walter and Guss (11) developed a neutron OM for En ≥ 10 MeV using σ(θ) and total cross-section data
σT plus a wealth of Ay(θ) data from measurements at TUNL. The mass range was restricted to A ≥ 54 in order
to avoid the complications associated with A-dependent quantities required in global models when lighter mass
nuclei are included. The lower limit of 10 MeV was selected in order to be free from significant compound-
nucleus formation and complicated energy dependences of the strength and radius of the real central term
between 0 ≤ En ≤ 10 MeV, a problem that was later explained as a result of the dispersion term (discussed
below). Most of the σ(θ) data employed by WG was for 10 ≤ En ≤ 26 MeV, but the (limited amount of) data
[12] available at 30 and 40 MeV were included in the data base for the global search. Walter and Guss



constrained the energy dependence of some of the terms so that they would approximately connect onto those of
Schwandt et al. This constraint included consideration of the isovector terms for the real central and real spin-
orbit interaction. They also forced the energy dependence of the real and imaginary spin-orbit terms to be
similar to that of Schwandt et al. In retrospect, these constraints have proven to be important for being able to
use the WG model up to 80 MeV. To test the reasonableness of the isovector terms, WG included the Coulomb
potential and calculated σ(θ) and Ay(θ) for a few nuclei between 16 and 80 MeV proton scattering; the
predictions were quite favorable (see Figure 4 of WG), suggesting that the model might be very suitable for
proton energies extending out to the 80 MeV where the Schwandt et al. model is designed to start.

The last global OM for heavy nuclei to be discussed here is the one obtained by Varner et al. [13] in 1991
from the analysis of proton σ(θ) and Ay(θ) data from 16 to 65 MeV and neutron σ(θ) and Ay(θ) from 10 to 26
MeV for nuclei with 40 ≤ A ≤ 209. These authors were guided in the design of the dependences on A by
microscopic model considerations. They introduced A-dependences into the radius parameters that were in
addition to the usual R = r0A

1/3; this modification impacts the strength of the isovector terms and complicates
comparisons to Schwandt et al., for example. Although the energy range was fairly large, they could not
establish the need for an energy dependence for the real spin-orbit term. Furthermore, as the predominant
modeling was performed with proton data, they did not recognize the need for an imaginary spin-orbit (Wso(E))
term, much less its energy dependence. This latter difficulty is not too surprising as we know that Wso(E) is
small in magnitude below 65 MeV and passes through zero somewhere in the region near 50 to 60 MeV.
However, by ignoring the data and energies of Schwandt et al., Varner et al. conclude that the Vso is constant
with Ep, and subsequently, with En. It is risky to extend their constant Vso into the region Ep ≥ 100 MeV where
the strength of the real central potential is of the order of their Vso, i.e., where scattering and reaction
predictions will be highly dependent on the parametrization of Vso(E) and Wso(E).

The group of Sakaguchi et al. [14] performed the high-accuracy proton measurements of σ(θ) and Ay(θ) at
65 MeV that were later employed in the model of Varner et al. Sakaguchi et al. also made a careful OM
analyses of these data, but concentrated only on their 65 MeV data. The measurements were for four nuclei for
40 ≤ A ≤ 208. They did not attempt to formulate the A-dependences exhibited in their tabulated OM
parameters, e.g., in their nuclear radius parameters, the difusenesses, and the potential strengths. They were
able to fit the data without a Wso(E) term. However, in a follow-up measurement Sakaguchi et al. [15]
measured the (polarization) rotation parameter R(θ) at 65 MeV for four nuclei with 40 ≤ A ≤ 208. In this
analysis they found that it was necessary to include a Wso(E) term with strengths ranging from -200 to -600
keV in order to fit σ(θ), Ay(θ) and R(θ). (Some of their data and calculations will be shown later.) This range
of Wso values is consistent with those of Schwandt et al. and WG.

For light nuclei Watson, Singh and Segel [16] developed a global model for nine isotopes with 6 ≤ A ≤ 16
for 10 ≤ Ep ≤ 50 MeV. The focus of the present paper is for A > 40, so this work will not be discussed here
other than to say that they suggested to replace with a constant the 1/r factor in the Thomas form factor of the
spin-orbit interaction in order to keep the interaction from taking on abnormally large values as r approaches
zero. They did introduce an isovector dependence term similar to that of Perey [5], which allowed them to
predict neutron scattering. In their judgment, their OM “can give a good description of the general features of
nucleon scattering from light nuclei”, but a more thorough search using present day computers should lead to a
better model.

III. Neutron Ay(θθ) measurements at TUNL

The measurement of Ay(θ) involves measuring the scattering cross section at a fixed angle when the
incident neutron beam is polarized along the normal to the scattering plane and comparing it to the cross
section when the beam is polarized in the opposite direction. This method of using alternate orientations of the
polarization direction eliminates the need to know the detector efficiency. To double the total number of counts
and to cancel some intrinsic instrumental asymmetries, one uses a second detector located at the same angle but



on the opposite side of the incoming beam axis. The arrangement at TUNL for Ay(θ) measurements is shown in
Figure 1 with three detedtor pairs. An incident beam of pulsed and polarized deuterons are accelerated in an
FN tandem Van de Graaff and are incident on a deuterium gas cell. Neutrons emitted at θ = 0° from the
2H(d,n)3He reaction are polarized at a level of approximately 90% of the vector polarization of the deuteron
beam, which is typically 60% to 70% at TUNL. These neutrons are scattered from cylindrical samples located
about 10 cm from the deuterium cell. With the available deuteron energies at TUNL (1 to 17 MeV), this
reaction provides polarized neutrons from 4 to 20 MeV. The overall time resolution of the detected neutrons is
about 2 ns and the maximum flight paths are 6 m (left side) and 4 m (right side). This combination limits the
nuclei for which we can resolve the elastically scattered neutrons from inelastically scattered to light nuclei and
to nuclei around closed shells. We have investigated the Ay(θ) for about 20 nuclei in the energy range from 8 to
17 MeV for 18° ≤ θ ≤ 155°. For a few nuclei we have data up to 19 MeV and down to 5 MeV. A sample of the
data is shown in Figure 2 alongside some OM calculations discussed later. Other than a set of data obtained for
six nuclei at 8 MeV in Stuttgart by Hammer’s group [17], the TUNL data are the only high accuracy Ay(θ) data
in the 5 to 20 MeV region. There does exist neutron Ay(θ) data out to 75° at for six nuclei [18] 24 MeV and
from 13° to 38° and 57° to 84° from the Alberta group [19] for 16O, 59Co and Pb at 23 MeV.

Figure 1. Arrangement at TUNL for Ay(θθ) measurements for neutrons using the pulsed-beam
time-of-flight method with detectors on the left and right sides to reduce instrumental asymmetries



Figure 2. Typical TUNL data for Ay(θθ); the curves are
calculations [22] discussed near the end of Section IV

IV. TUNL OM analyses 1: Global analyses

Three “global” OM analyses have been performed at TUNL. One was an analysis of neutron and proton
elastic-scattering σ(θ) for p-shell nuclei by Dave and Gould (DG) [20] in 1983. The energy range was from 7 to
15 MeV and much of the data for neutrons was measured at TUNL. No polarization data was included in this
analysis. DG used the spin-orbit strength and radius of Watson et al. [16] and a slightly larger diffuseness.
Because their analysis did not include polarization data, their spin-orbit parameters are not included in the
table below.

Another TUNL product is the global OM referred to above as the work of Varner et al. The 16-MeV
proton σ(θ) and Ay(θ) data used in their analysis was measured at TUNL by Varner’s group and much of the
neutron σ(θ) and Ay(θ) data was obtained at TUNL by our group. One criticism of the neutron analysis is that
Varner et al. did not include total cross-section data in the search nor in the comparisons to calculations.

The other global model is the one discussed above that was developed by Walter and Guss specifically for
neutrons in the energy range 10 ≤ En ≤ 40 MeV, but one that appears to give reasonable predictions up to
80 MeV. This work was reported in the proceedings of an international conference on nuclear data. However, a
problem arose when the publishers were changed during the publication process and the final manuscript was



lost. Unfortunately, an earlier version of the manuscript that contained some typographical errors and
omissions was substituted by the publishers and printed. Because this potential is frequently used in
calculations for nuclear applications and some users might not have been alerted to this publishing problem,
we tabulate the correct parametrization here. However, first we write the normal OM formulae to define the
symbols. The general formulae introduced here are the same as those used in all the OMs mentioned in
Section II, even to the extent that they all used the same radial forms of the potentials, i.e., Woods-Saxon (WS)
for volume terms (real and absorption) and derivative Woods-Saxon for the surface terms (absorption and spin-
orbit).

The optical-model potential is written as:
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where the subscripts v, s and so indicate the volume, surface and spin-orbit terms, respectively. The fv(r,Ri,ai)
and fs(r,Ri,ai) are the volume and surface form factors, respectively. The conventional fv and fs are WS and
derivative WS forms:
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The real central and the imaginary surface terms have isovector terms, which depend on the asymmetry
parameter ε = (N-Z)/A, that are denoted by Vv1, Ws1 and Vso1. For protons (z=1) one includes the normal
Coulomb scattering term VC(r) explicitly in eqn. (1). To have a unified model for neutrons and protons, one
adds, respectively, the real-volume and the surface-imaginary “Coulomb shift terms” ∆VC and ∆WC, which
account for the slowing down of the proton as it approaches the nuclear surface. All these terms lead to the
final expressions for the terms in eqn. (1):
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In the isovector terms in eqns. (4), the (+) sign applies to proton scattering and the (-) to neutron
scattering. With these definitions and sign conventions at hand, we now list the WG parameters in Table 1.
Although this model was designed for 10 to 40 MeV, it might be a good guide of σ(θ) and Ay(θ) up to 80 MeV,
since it is able to give good predictions to the 80 MeV proton data of [10]. Furthermore, even though we know
that Ws must drop off somewhere around En = 5 MeV and decrease to about Ws = 2 MeV at En = 0, it has been
shown [21] that the WG model is reasonably successful at predicting cross sections below En = 10 MeV if one
merely assumes that the value that the WG potential gives at 10 MeV is valid everywhere below 10 MeV.



Table I. Optical model parameters for the Walter-Guss (WG) potential.
Potential depths are in units of MeV and lengths are in fm.

Vv0 + Vv(E) = 52.56 - 0.310E for E ≤ 40

Vv0 + Vv(E) = 52.56 - 0.310{40[1+ ln(E/40)]} for E ≥ 40

Vv1 = 16.50 - 0.081E for E ≤ 40

Vv1 = 16.50 - 0.081{40[1 + ln(E/40)]} for E ≥ 40

Ws0 + Ws(E) = 10.85 - 0.157E for E ≥ 10

Ws1 = 14.94 Above E where Ws0 + Ws(E) ± εWs1 + ∆WsC < 0, set Ws = 0

Wv = - 0.963 + 0.153E for 6.29 ≤ E ≤ 39.4

Wv = - 0.963 + 0.153E[1 - 0.33 ln(E/39.4)] for E ≥ 39.4

Vso0 + Vso(E) = 5.767 - 0.015E Vso1 = - 2.0ε

Wso0 + Wso(E) = 0.791 - 0.018E

rv = 1.219 av = 0.688 rws = 1.282 aws = 0.512

rwv = 1.38 +3.76/A awv = 0.557 - 0.462(A-1/2)

rvso = 1.103 avso = 0.560 rwso = 1.364 awso = 0.632

For neutrons: ∆VvC = ∆VvC = ∆WsC = 0

For protrons: ∆VvC = 0.4 ZA-1/3 for E ≤ 40 ∆VvC = 0.4 ZA-1/3(678/E2) for E ≥ 40

∆WsC = -1.30 RC = rvA
1/3

VC = (zZe2)/r for r ≥ RC VC = (zZe2/2RC
2)[3-(r2/RC

2)] for r ≤ RC

Table 2. Spin-orbit optical-model parameters for nucleon-nucleus elastic scattering

Ref. Year Mass
(amu)

Energy
(MeV)

Vso

(MeV)
rso

(fm)
aso

(fm)
Wso

(MeV)

BG[6] ‘69 45-209 7≤Ep≤40 6.2 1.01 0.75 0.0

54-208 1≤En≤24 “ “ “ “

WG[11] ‘85 54-208 10≤En≤40 5.767-0.015E
±(-2.0ε)

1.103 0.512 0.791-0.018Ea)

Var[13] ‘91 40-209 16≤Ep≤65 5.9 1.34-1.2A-1/3 0.63 0.0

10≤En≤26 “ “ “ “

Sch[10] ‘82 40-208 80≤Ep≤180 19(1-0.166 lnE)
±(-3.75ε)

0.920+.0305A1/3 0.6b) 7.5(1-0.248 lnE)c)

Per[5] ‘63 27-197 9≤Ep≤22 avg = 7.0 1.25 0.65 0.0

Men[8] ‘71 54-208 30≤Ep≤60 6.04 1.064 0.78 0.0

RKF[7] ‘79 40-208 7≤En≤26 e) e) e) e)

WSS[16] ‘69 6-16 10≤Ep≤50 5.5 1.15-0.001E 0.57 0.0

Sak[15] ‘86 40-208 Ep=65 avg = 4.7 avg = 1.05 avg = 0.6 avg = -0.32d)

Wei[28] ‘96 208-209 -20≤En≤80 6.10-0.015E 1.126 0.559 0.791-0.018Ea)

a) Geom.: rwso = 1.364, awso = 0.632. d) Geom.: average rwso = 1.46, average awso = 0.60.
b) Use 0.6 for Ep≥140 and 0.786-0.0012Ep for Ep≤140. e) Adopted BG parameters.
c) Geom.: rwso = 0.877+0.036A1/3, awso = 0.62.



In Table 2 we summarize the parameters of spin-orbit potentials reported by various groups along with the
mass and energy ranges covered in their analyses. Figure 3 is a graphical presentation of the strengths as a
function of nucleon energy. In producing this graph, we assumed that the projectile is protons and that ε = 0.1,
i.e., the mass range near 90Y. This concern is only important for WG and Schwandt et al. who have an
isovector component in the Vso. One sees that the values clump together, but it is also clear that by including
the values above 80 MeV (Schwandt et al.), there is likely an energy dependence that extends to low energies as
well.

Figure 3. Graphic presentation of the strength of Vso; values are taken from Table 2.

In regard to the Wso term, we note that the derivative in eqn. (3) will introduce an (awso)
-1 factor as it does

in the normal surface absorption term Ws. However, in the middle line of eqn. (1) the Ws term “anticipates”
this factor by introducing a compensating awso explicitly into the formula. In addition, there is a factor of 4
inserted. (This form is conventional; when written in this way, the maximum value of 4awso{d/dr[f(r)]} is unity.
The formula given in the bottom line of eqn. (1) for the absorptive spin-orbit term is also standard for this spin-
orbit term; that is, the 4awso quantity is not part of the definition. Thus, the ratio of the quantities Wso to Ws is
not a true measure of the relative strengths; a factor of 4awso ≈ 2 must be taken into account. Hence, a Wso of
800 keV relative to a Ws of 8 MeV corresponds to a ratio of approximately 1:20. All of this discussion neglects
the amplification introduced by the dependence on the orbital angular momentum l through the l·σσ factor.
Likewise, the true strength of the real spin-orbit potential is not given by the quantity Vso, but is given by the
ratio of Vso/aso, because the derivative introduces a 1/aso. Strictly, then, the value of aso should be included in
comparisons of spin-orbit “interaction strengths” for different potential sets, so just comparing the strength of
Vso as is done in Figure 3 is a bit misleading.

Since the present paper is focusing on properties of the spin-orbit term, we note the following problem.
The quantity (ħ/mπc)2 in eqn (1) is the square of the pion Compton wavelength and coincidentally its value is
2.000 when expressed in fm2. It has been common to write this term in the eqn. (1) simply as the digit 2 and
not mention the units fm2. This has caused confusion when writing the value of Vso in MeV, as is commonly
done. In a recent paper Varner et al., who used the value 2, introduced the units of MeV.fm2 for values of Vso.
It should be understood that when one writes 2 in eqn. (1) that the 2 carries units of fm2 and then Vso is in units
of MeV, the normal unit for potential strengths.



A typical set of the TUNL neutron Ay(θ) data was shown above in Figure 2. Some Ay(θ) for 65-MeV
208Pb(p,p) scattering data of [15] is shown in Figure 4. Because of the relative counting rates between neutron
and proton scattering and the small size of proton detectors, which allows for a large array of detectors, the
proton data is more plentiful and has about an order of magnitude smaller statistical errors. The curves through
the data are OM calculations by Sakaguchi et al.[15] The lower two frames shows the polarization rotation R(θ)
and depolarization D(θ) parameters. The solid curves are the best fit to σ(θ), Ay(θ) and R(θ) including a Wso

term. The dotted and dashed curves, respectively, are a fits to only σ(θ) and Ay(θ) with and without inclusion of
a Wso term. At this energy Wso is found to be small, and neither σ(θ) nor Ay(θ) are sensitive to its inclusion
except at extreme back angles. The fit to R(θ) and D(θ) is clearly improved when Wso is included.

The impact of Vso and Wso from 80 to 180 MeV is dramatic. The Vv is heading toward a zero crossing at
slightly higher energies, and these spin-orbit terms are becoming more influential. For proton scattering,
Schwandt et al. [10] observed that the oscillating Ay(θ) grows increasingly more positive in value as θ
increases. The graphs of Ay(θ) in WG [11] display quite nicely that this effect holds over the entire angular
range from 60° to 170° for Ni and Fe at 65 MeV and from 70° to 140° for Pb at 80 MeV; that is, in these
angular ranges the Ay(θ) always ranges between about +0.8 to +1.0. Walter and Guss also show predictions for
54Fe(n,n) and 208Pb(n,n) for neutron energies from 30 to 70 MeV. The predictions for 208Pb are reproduced in
Figure 5 of the present paper. Clearly between 60° and 160° the spin-orbit term has the dominant impact on the
scattering. An Ay(θ) of +1.0 means that if the incident beam is 100% polarized in the “spin-up” direction, at
that angle all the particles would scatter to the left. Similarly, where Ay(θ) = +1.0, if an unpolarized beam is
incident, (i.e., an equal number of “spin-up” and “spin-down” neutrons in the beam) 100% of the “spin-up”
will scatter to the left and 100% of the “spin-down” will scatter to the right. This must mean that the spin-orbit
term has the dominant impact on the scattering, i.e., on σ(θ), in this angular region. Since Wso is nearly zero at
70-MeV, the high Ay(θ) here cannot be attributed to “spin-down” neutrons being preferentially absorbed over
“spin-up” in the scattering to the left side. In our view, this “near unity Ay(θ)” is one of the most interesting
features in polarization phenomena.

We have noticed in our calculations that in the 10-20 MeV neutron energy range, the inclusion of a
positive Wso value (as obtained in the WG analysis) pulls the Ay(θ) distribution to lower values over almost the
entire region from 0° to 180°. One must attribute this as an l-dependent absorption that is less transparent to
spin up neutrons on the left side than it is to spin down neutrons, and vice versa for the right side scattering.
(The opposite probably occurs at higher energies where the Wso has changed sign.) This phenomena could not
be produced by varying any other OM parameter or combination of parameters. The chi-squared values of the
fit to the neutron Ay(θ) data was considerably reduced by introducing a positive value Wso in our OM fits to
many of the data sets. An example of the sensitivity and the improvement in the fit with the WG Wso term is
shown in Figure 2 for 89Y(n,n). The data and calculations are from Honoré et al. [22]. We note that this paper
also contains good pedagogical illustrations of the sensitivity of OM calculations for σ(θ) and Ay(θ) to
variations of the strength of Vso(E) and variations in the values for rvso(E) and avso(E).



Figure 4. Example of proton scattering data at 65 MeV for σσ(θθ), Ay(θθ), the rotation parameter
R(θθ) and the depolarization parameter D(θθ). The data are for 208Pb(p,p). The curves are
OM calculations: (solid) best fits for σσ, Ay, and R with Wso; (dashed) best fit for σσ and Ay

only without Wso; (dotted) best fit for σσ and Ay with Wso. This plot is reproduced from [15].



Figure 5. Calculations for 208Pb(n,n) at 30 MeV, 50 MeV and 70 MeV showing the growth
of the large, positive values of Ay(θθ) at back angles with increasing neutron energy [11]

It should be remarked here that all of the OMs discussed to this point have used the non-relativistic
Schrödinger equation to solve the scattering problem. Schwandt et al. [10] did use relativistic kinematics and a
relativistic modification to the real potential strength. We will ignore the relativistic Dirac OM for nucleon-
nucleus scattering except to comment that the model predicts a negative value [23] for Wso for energies above
40 MeV. An interesting review of the status of non-relativistic and relativistic models, along with the
comparisons of data and predictions from 200 to 800 MeV by Ray et al. appeared in 1992.[23]

There needs to be one last comment on global models at low energies. In a global model it now seems that
it makes good sense to write the E-dependent quantities in terms of the projectile kinetic energy (E) minus the
Fermi energy (EF) instead of merely E, as has been done up to this date. Mahaux [24] started to move in this
direction but dropped the project. Wang and Rapaport [25] made some observations in terms of (E - EF) in their
study of the magnitude of the isovector term for neighboring isotopes. It seems to us that improved fits to the
data could be achieved if the E-dependences were determined as functions of (E - EF); we may attempt this in
the near future.

V. TUNL OM analyses 2: Dispersive OM analyses

Since about 1987 there has been an increasing interest in the dispersive optical model (DOM) as a method
for eliminating some of the problems with the energy dependence of the radius and strength of the real central
potential at low energies. Mahaux and co-workers [26] have made many contributions to the development of
this approach. They emphasized that the DOM allows one to connect the scattering regime (positive energies)
to the shell model regime (negative energies). This approach has been shown to give good predictions to single-
particle bound-state energies and to the scattering data without introducing any abnormal explicit E-
dependences in the OM parameters. Many DOM papers have now been published for neutron-nucleus cases
and a few for proton-nucleus cases.



At TUNL we have investigated about ten neutron scattering systems between 27 ≤ A ≤ 209 over the
energy range from about –20 to +80 MeV. In these analyses the TUNL σ(θ) and Ay(θ) data make up about half
of the database. In addition, the relatively recent high-accuracy total cross-section σT data of Finlay et al. [27]
has played a key role in determining the E-dependence of all the potential strengths, but in particular the
volume- and surface-absorption strengths. At TUNL we use a modified spherical OM search code to scan
parameter space and to minimize chi-squared in the fit to the scattering and σ T data. Excellent agreement with
the data has been achieved for nearly all the nuclei studied. An example of one of the more thorough treatments
is the recent report of an isospin-consistent DOM for 208Pb(n,n) and 209Bi(n,n) by Weisel et al. [28] This model
incorporated the innovations suggested by Mahaux and Sartor [26] i) of an absorptive potential (in the
dispersion integral) that is asymmetric about EF and ii) of inserting a region centered on E = EF in which the
absorptive potentials are set to zero.

The dispersion relation connects the imaginary potential to the real potential [ref JHM] through the
integral:
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where P stands for the principal value. Here W represents the sum of the volume and surface terms of the
imaginary potential. Note that the integral extends from –∞ to +∞ Therefore, a good knowledge of the
E-dependence of W(E',r) is required before one can use the DR approach; this problem plus the speed of older
computers made DR calculations difficult before about 1980.

Through the integration, one generates volume and surface contributions ∆Vv and ∆Vs, respectively, to the
real central potential. The radial shapes of these contributions, which are called dispersion corrections, are
identical to those of the original Wv and Ws. Therefore, through the dispersion relation (DR) for the surface
imaginary term Ws(r,E), the real part of the DOM potential contains a surface as well as the conventional
volume component. One separates the total real potential V(r,E) into a Hartree-Fock part VHF and the two
dispersive contributions: V(r,E) = VHF(r,E) + ∆Vv(r,E) + ∆Vs(r,E). It is the energy dependence of both DR
terms that gives V(r,E) a complicated behavior at low energies; the size and sign (which changes near 15 MeV)
of ∆Vs causes the effective radius of the real central potential to vary with energy. This detail had been observed
in non-DR optical model searches on data. So the DR corrections, which have a solid physical base, explain
many of the previous problems associated with attempts to describe scattering data below about 15 MeV with
standard OMs. Space limitations prohibit us from reproducing here the potentials that Weisel et al. found to
give good descriptions to the data. (See Figures 20 to 22 in [28].) The DR corrections are reproduced here in
Figure 6. Samples of the quality of agreement between the calculations and the data are shown in Figures 7 to 9
for σ(θ), Ay(θ) and σT, respectively. The same WS shapes given in eqns. (2) and (3) above were used for the
base potentials and for the DR contributions.

The dispersion correction terms are calculated for only the real central potential term. No such corrections
have been added yet either to the imaginary terms or to the spin-orbit terms. Therefore, it is reasonable to
consider the spin-orbit parameters of DOMs in comparison to those obtained in non-DR OMs. The values of
Weisel et al. have been included in Table 2; in their search they used the WG values as starting parameters for
Vso(E) and Wso(E) and never found a need to modify the energy dependences.

In summary, the DOM is capable of describing the scattering data in a natural way that leads to simple energy
dependences of the base potential terms and explains the changing radial dependence as the energy changes.
Furthermore, the DOM gives a natural extension to negative energies and allows one to calculate properties of
single-particle bound states. This was first done for 208Pb in [29] and most recently in Weisel et al. The latter
paper exhibits the sensitivity and complicated dependence of the location of the valence single-particle binding
energies on the Vso, rso and aso.



Figure 6. Surface and volume dispersion-relation contributions to V(r,E). See reference [28]
regarding the four sets of calculations. The “full-constr” is an isospin consistent model for Pb and Bi.

Figure 7. The DOM calculations for σσ(θθ) compared to data for 208Pb(n,n) from 8 to 14 MeV [28]



Figure 8. The DOM Ay(θθ) calculations compared to data for 208Pb(n,n) from 8 to 14 MeV.
The barely visible dotted curves that lie close to the data are ones that include Wso.[28]

Figure 9. The DOM calculations for σσT compared to data for 208Pb and 209Bi
from 2 to 80 MeV. Note the zero offset on the vertical scale. The size of a

1.5% discrepancy between data and calculation is indicated.[28]



VI. TUNL OM analyses 3: Microscopic OM analyses

In collaboration with L. Hansen and F. Dietrich of LLNL we have been investigating the normalization
factors λ for the three potential strengths (V, W and Vso) for neutron-nucleus scattering for 8 ≤ E ≤ 17 MeV,
typically, and for 6 ≤ A ≤ 208 wherever substantial polarization data exist and for a few cases of proton-nucleus
scattering. The major objective here is to concentrate on the λso and the TUNL neutron Ay(θ) data, since most
of the previous neutron microscopic analyses concentrated on σ(θ) data. We were also curious about how well
one of the more common interactions, that of Jeukenne, Lejeune and Mahaux (JLM) [30] described our σ(θ)
and Ay(θ) data for (n,n) and (p,p) scattering for 1p-shell nuclei. This model, which has no spin-orbit term, is
based on the Reid hard-core nucleon-nucleon interaction. Our JLM calculations use the real and energy
independent M3Y spin-orbit interaction with Elliott oscillator G-matrix elements as given by Bertsch et al. [31]
We also compared the data to calculations using the interaction of Yamaguchi, Nagata and Matsuda (YNM)
[32] who based their model on the Hamada-Johnson interaction, which includes a spin-orbit term. Some of the
previous analyses by Hansen and Dietrich, which can serve as an introduction to these microscopic
calculations, are given in [33]. These publications indicated that good quality fits to σ(θ) can be achieved with
both JLM and YNM interactions, provided the strengths are scaled by smoothly varying energy-dependent
renormalization parameters λV(E) and λW(E) for the real central and the imaginary potentials, respectively.

An example of the calculations for 89Y(n,n) at 10 MeV are shown in Figure 10. This kind of agreement is
typical for medium weight nuclei. Our findings in this mass range are that the JLM interaction predicts details
in σ(θ) better than YNM at 8 MeV, but the opposite is true at 17 MeV. There is a slight tendency for the YNM
interaction to give better predictions to Ay(θ) than the JLM with the M3Y spin-orbit interaction.

For the lighter nuclei these microscopic calculations are not as agreeable. For example, for 11B we are
successful in describing the σ(θ) for both (n,n) and (p,p), especially at the lower end of the energy range where
the second diffraction minimum has not fully evolved yet. We use the same normalization constants λ for both
projectiles. The descriptions of Ay(θ) data for 11B are not as successful as for σ(θ), however. Some results for
neutron σ(θ) and Ay(θ) for 10B are shown in Figure 11. For all the light nuclei general features of Ay(θ) data
are predicted, but the overall quality of agreement is somewhat disappointing. For instance, for 9Be, which is
the worst agreement, the entire calculated Ay(θ) distribution lies about 0.1 to 0.2 units above the data at all
energies (9 to 17 MeV). For 6Li the same is true for backward angles at the higher energies; forward angle data
are well fit above 10 MeV. Perhaps for the backward angles for scattering from these light nuclei, exchange
effects are influencing the distributions.

Now for some general findings about the Ay(θ) calculations. Interestingly, the JLM and YNM predictions
for Ay(θ) closely resemble one another. Additionally, both interactions typically do a better job of describing the
Ay(θ) for (p,p) than for (n,n). We also note that the Ay(θ) do not “scale” as the λso is changed from, for
instance, 0.9 to 1.7; the calculated results act as if a damping or saturation process is occurring.

On the average, the optimum normalization λso was found to be in the range of 1.3 to 1.5 for both models
for all nuclei heavier than A = 10. The agreement with the 6Li and 9Be Ay(θ) data was improved if λso took on
values greater than 2.0. This may be more an indication of a problem with the spin-orbit radial dependence that
the code is generating for these light nuclei rather than a problem with the normalization factor.

For medium- and heavy-weight nuclei, the λV(E) was only slightly energy dependent with a value of
0.98 ± 0.04 for JLM and about 0.95 ± 0.05 for YNM. For these same nuclei the λW(E) started at about 0.7 (0.6)
at 8 MeV and leveled off around 0.95 (0.7) at 11 MeV for JLM (YNM). For 6 ≤ A ≤11 the λV(E) were quite
A-dependent. For both models it took on values of about 1.2, 1.03, 1.03 and 1.09 for 6Li, 9Be, 10B and 11B,
respectively. The λW(E) for JLM (YNM) for 9Be, 10B and 11B rose from about 0.6 (0.5) at 8 MeV neutron
energy to about 1.0 (0.7) at 13 MeV and rolled off to about 0.8 (0.6) at 17 MeV. For 6Li the λW(E) just gently
rose from 0.8 (0.7) to 1.3 (1.1) as the energy increased from 8 to 17 MeV. We plan to publish our findings in a
comprehensive report in the next year.



Figure 10. Microscopic OM calculations of σσ(θθ) and Ay(θθ) for 89Y(n,n) compared to data (see text)

Figure 11. Microscopic OM calculations of σσ(θθ) and Ay(θθ) for 10B(n,n) compared to data (see text)



Summary statements and acknowledgements

In summary, several approaches have been used to describe cross-section and polarization data, and the
models are more successful for nuclei with A > 16. The spin-orbit parameters have been fairly localized, i.e., if
one accepts a Thomas-type derivative form. More investigations with Scheerbaum’s microscopic prescription
[34] should be made to study the significance of this approach. Below 80 MeV the σ(θ) and σT are not sensitive
to modest variations in the spin-orbit parameters, except in deep minima of σ(θ) and at large scattering angles.
Also, below 80 MeV the Wso has a negligible influence on cross sections; its influence even on Ay(θ) is so
slight that its presence in this energy range is still controversial. (We are of the opinion that is present at the
level given by the WG parameters.) Above 80 MeV the strength of the real central potential is dropping in
magnitude, the spin-orbit term becomes increasingly more important factor in scattering and reactions. It will
be very important to have the correct form and parametrization for Vso(E,r) to make realistic cross-section
predictions with increasing energy.

We have displayed our results for three approaches for describing the data. Important new developments
[35] using the DR in coupled-channel calculations and using improved densities and interactions in
microscopic calculations are just being released by Delaroche’s group at Bruyères-le-Châtel. This work should
contribute more fully to our understanding the features of the spin-orbit interaction.

We are grateful to the personnel in the TUNL neutron group who participated in the measurements over
the years and who contributed to the analyses summarized here. We are particularly in debt to Profs. C.R.
Howell and W. Tornow for the generous guidance they have provided to the students and to us. We also are
thankful to the visitors from the China Institute of Atomic Energy and Tsinghua for their involvement in parts
of the DOM work reported here. This project was supported in part by the U.S. Department of Energy, Office of
High Energy and Nuclear Physics under Grant No. DEFG05-91-ER40619 and the U.S. National Science
Foundation under Grant No. INT-9215354 (U.S.-China Cooperative Science Program).
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