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Abstract

The dispersive optical model approach to nucleon scattering is extended from spherical nuclei to

permanently deformed nuclei for the �rst time. Here, a dispersive coupled channels analysis of proton

and neutron scattering and reaction cross sections is presented for 181Ta and 182;184;186W for incident

energies up to 200 MeV. A very good overall agreement between experimental data and predictions

is achieved up to 65 MeV. Above this energy it is necessary to introduce an explicit treatment of the

non-locality of the imaginary potential to achieve an excellent agreement.

1 Introduction

Dispersion relations (DRs) have so far been used to build mean �elds of protons and neutrons in spherical
nuclei. These dispersive optical model potentials (OMPs) have been quite successful in describing the
nucleon single-particle properties in the bound state region and continuum over a broad energy range [1].

The dispersive OMP studies are here extended to deformed nuclei. This study is limited to positive
energies, mainly for two reasons. First, single-particle strengths in deformed nuclei are considerably
fragmented. Second, the spherical shell model is not appropriate for predicting bound state properties of
these nuclei.

The interaction of nucleons with 181Ta and 182;184;186W, four nuclei at the edge of the rare-earth
region, is analyzed in the coupled channels (CC) framework for incident energies up to 200 MeV. This
analysis, which requires a generalization of the usual dispersion relations, is now presented.

2 Dispersion Relations

2.1 Spherical nuclei

The complex mean �eld of a nucleon in a spherical nucleus is usually de�ned as

U(r; r0; E) = VHF (r; r0) +
P

�

Z W(r; r0; E0)

E0 �E
dE

0 + iW(r; r0; E)

= VHF (r; r0) + �VW(r; r0; E) + iW(r; r0; E); (1)

where VHF (r; r0) is a smooth potential (this term corresponds to the so-called Hartree-Fock (HF) potential
in phenomenological OMP analyses), �VW(r; r0; E) the dispersive term, and W(r; r0; E) the absorptive
potential. Here P stands for principal value. U(r; r0; E) is non-local and energy dependent. Through a
Wigner transformation, U may be expressed in terms of the momentum k

~U(r; k; E) = ~VHF (r; k) + �~VW(r; k; E) + i ~W(r; k; E): (2)

The OMP is closely related to ~U(r; k(r; E); E) which stems from the on-shell approximation:
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k
2(r; E) � (

2�

�h2
)[E � ~VHF (r; k(r; E))]; (3)

where ~VHF (r; k(r; E)) � VHF (r; E) is the local-equivalent HF potential and � the reduced mass.
In the calculation of DR terms, only the explicit dependence on E of the imaginary potential should

be considered. This means that the dependences upon k and E should be disentangled before the on-shell
approximation is performed. Assuming a Perey and Buck type of non-locality [2] for the absorption, it
follows that the DR terms to be used in phenomenological OMP analyses are written as [3]

�Vi(r; E) = e
��2k2(r;E)=4P

�

Z
e
+�2k2(r;E0)=4

Wi(r; E
0)

E0 �E
dE

0
; (4)

where � is the non-locality range, and where Wi stands for the surface (i = D) or volume (i = V )
absorption. In our analysis, eq.(4) has been used only for the surface absorption. Including the non-
locality of WV into the calculation of �VV would result in a renormalization of the Hartree-Fock term.
Therefore, �VV is calculated assuming � = 0 in eq.(4).

The on-shell momentum k(r; E)) de�ned in eq.(3) and entering into eq.(4) depends upon the \Hartree-
Fock" potential. For VHF (r; E), we adopt a form inspired from the Perey and Buck approximation

VHF (r; E) = V0e
��2

0

�

2�h2
[E�VHF (r=0;E)]+�

2

1

4�2

�h4
[E�VHF (r=0;E)]

2

f(r); (5)

where f(r) is a Woods-Saxon shape, and �0 and �1 two parameters which mimic an E-dependent range
of non-locality for VHF .

2.2 Deformed nuclei

In the body-�xed system of coordinates of the nucleus, the complex mean �eld felt by a nucleon is

U(�!r ;�!r 0; E) = VHF (�!r ;�!r 0) +
P

�

Z W(�!r ;�!r 0; E0)
E0 �E

dE
0 + iW(�!r ;�!r 0; E)

= VHF (�!r ;�!r 0) + �VW(�!r ;�!r 0; E) + iW(�!r ;�!r 0; E): (6)

Treating the radial coordinates and momentum as independent variables, a Wigner transform leads to

~U(�!r ;�!k ;E) = ~VHF (�!r ;�!k ) + �~VW(�!r ;�!k ;E) + i ~W(�!r ;�!k ;E): (7)

The deformed OMP is again closely related to ~U(�!r ;�!k (�!r ; E); E) through the on-shell approximation

k
2(�!r ; E) � (

2�

�h2
)[E � ~VHF (�!r ; k(�!r ; E))]; (8)

where ~VHF (�!r ; k(�!r ; E)) � VHF (�!r ; E) is the local-equivalent, deformed HF potential.
Following the same reasoning as before for spherical nuclei, the dispersive (surface) term writes

�VD(�!r ; E) = e
�(�

2�

2�h2
)[E�VHF (

�!r ;E)]P
�

Z
e
+( �

2�

2�h2
)[E0

�VHF (
�!r ;E0)]

WD(�!r ; E0)
E0 �E

dE
0
; (9)

in which the deformed HF potential is parameterized as

VHF (�!r ; E) = VHF (E)f(r; aV ; RV ): (10)

In eq.(10), f(r; aV ; RV ) is a deformed Woods-Saxon shape

f(r; aV ; RV )
1

1 + e

r�RV
aV

; (11)
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with

RV = rV A
1

3 [1 + �
V
2 Y20(


0) + �
V
4 Y40(


0)]; (12)

where �V2 and �
V
4 are quadrupole and hexadecapole deformations, respectively, and where the angle 
0

refers to the body-�xed system.
The coupled channels calculations require that the deformed OMP be expanded into spherical har-

monics. For �VD(�!r ; E), this expansion reads

�VD(�!r ; E) =
X
��0

�V �
D (r; E)Y�0(


0); (13)

where

�V �
D (r; E) = e

�(�
2�

2�h2
)E
X
l;l0;j;�

(2j + 1)
^

l

^

l

0
^

�

^

�

4�2
(
l l

0
j

0 0 0
)2(

j � �
0 0 0

)2

�A�(r; E)P
Z

e
+( �

2�

2�h2
)E0

B
l0(r; E0)W l

D(r; E
0)

E0 �E
dE

0
; (14)

in which A
�(r; E), B

l0(r; E0) and W
l
D(r; E

0) are coe�cients of the expansions of

e
+( �

2�

2�h2
)[VHF (

�!r ;E)], e�( �
2�

2�h2
)[VHF (

�!r ;E0)] and WD(�!r ; E0), respectively, and
^

l=
p
2l+ 1.

The CC calculations are performed using Raynal's ECIS95 code run in the external input mode [4].
All the calculations are performed using DR terms calculated in the subtracted form

�VD(�!r ; E) =
P

�

Z +1

�1

WD(�!r ; E0)(
1

E0 �E
� 1

E0 �EF
)dE0; (15)

where EF is the Fermi energy.

3 Dispersive deformed optical potential

In our analysis, the geometry parameters of all potentials remained �xed for all energies and were assumed
identical for the real and imaginary volume terms. The deformed optical potential for neutrons and
protons is written as

U(�!r ; E) = �(VHF (E) + �VV (E) + iWV (E))f(r; aV ; RV )

+4aD(�VD(E) + iWD(E))
d

dr
f(r; aD; RD) + VC(�!r ; aC ; RC)

�2i��2
�(VSO(E) + iWSO(E))

�!5f(r; aSO ; RSO)��!5:�!s ; (16)

where the strengths of the real potential, the volume and surface absorptions, and the real and imagi-
nary spin-orbit potentials are fVHF ;�VV ;�VDg;WV ;WD; VSO ;WSO , respectively. VC is the Coulomb
potential (VC = 0 for neutrons).

The radial form factors f(r; ai; Ri) (i = V;D; SO;C) are Woods-Saxon types (see eq.11), and the
deformation lengths �� (� = 2, 4) are kept identical for all the potential terms

�� = �
V
� rV A

1

3 = �
W
� rWA

1

3 = �
D
� rDA

1

3 = �
SO
� rSOA

1

3 = �
C
� rCA

1

3 : (17)
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Figure 1: (a) Neutron total cross section and (b) proton reaction cross section for 181Ta. Comparisons between

experimental data and present calculations, which include a treatment of the non-locality of the surface absorption.
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Figure 2: Comparisons between measured elastic di�erential scattering cross sections and present CC calculations

including a treatment of the non-locality of the surface absorption for (a) n + 181Ta and (b) p + 181Ta systems.
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4 Data analyses

4.1 Neutron + 181Ta

The data set which we used in the CC analyses consists of neutron elastic scattering di�erential cross
sections between 2.47 and 14.6 MeV, and neutron total cross section for neutron energies between 50 keV
and 200 MeV. We have also used the S- and P -wave strength functions S0 and S1 and potential scattering
radius R0. Compound-nucleus contributions to the di�erential cross sections were calculated up to 8 MeV
using the Hauser-Feshbach theory complemented with the width uctuation factor of Moldauer.

The present analysis consisted of adjusting all potential depths and geometries. The deformation
parameters have also been optimized, taking as �rst guesses the deformations �2 and �4 of

182W as given
in [6]. The coupling scheme includes the 7=2+ to 15=2+ states of the ground state band.

In a �rst step we have ignored the non-locality of WD when calculating the DR terms. In a second
step the non-locality has been included, and its range adjusted to optimize the �t to the �T data (see
Fig.1(a)). The optimum value found for this range is � = 1:2 fm. The e�ect of non-locality of WD

on CC predictions increases with increasing energy. It is weak at low energy (E � 20 MeV). Including
the non-locality is essential to produce an excellent �t to �T [5] at high energy (E � 20 MeV). When
� is varied from 1:2 fm to zero, the chi-square per datum (�2=N) drops by a factor of 3.4 in the 20 -
160 MeV energy range. �2=N is slightly getting worse beyond 160 MeV. This probably means that our
parameterization of WV (E) is not realistic enough above pion production threshold (see Fig.6). We also
obtain a very good agreement between measured and calculated di�erential cross sections (see Fig.2(a)).

4.2 Proton + 181Ta and proton + 182;184W
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Figure 3: Proton elastic and inelastic scattering from 182W at (a) E=65 MeV and (b) E=134 MeV. Comparison

between measurements (dots) and CC calculations in which the range of non-locality is included (continuous

curves). The dashed curves shown at E=134 MeV are obtained by setting � = 0 in the CC calculations.
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The dispersive coupled channels analysis was also applied to the p+181Ta and p + 182;184W systems.
Comparisons between the CC calculations and measured di�erential cross sections are presented in
Figs.2(b),3(a) and 3(b). Here also our predictions compare very well with the experimental data provided
the non-locality of WD is included. The optimum value of the non-locality range is � = 1:4 fm. Without
having � 6= 0, the CC predictions for 182W(p,p')182W� at E = 134 MeV badly miss the magnitude and
shape of the measured [7] di�erential cross sections (see Fig.3(b)). On the other hand, the �R data for
181Ta are too scarce for providing useful and complementary information on � (see Fig.1(b)).

4.3 Predictions for n + 182;184;186W
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Figure 4: Neutron elastic and inelastic scattering from 184W at 3.4, 4.87, 6.0 and 26 MeV. Comparison between

experimental data and present predictions.

The above deformed neutron OMP tailored to �t the n + 181Ta experimental data is now used to predict
scattering and reaction cross sections for neutrons incident on the isotopes 182;184;186W and elemental
tungsten natW.

Because the asymmetry parameter � = N�Z
A for 181Ta (�181 = 0:193) is nearly identical to that for

184W (�184 = 0:196) the following relation holds for the OMPs

U(n+181
Ta) � U(n+184

W ):

For simplicity, we assume the same property to be valid for the other W isotopes. Only the deformation
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Figure 5: Neutron total cross sections for W isotopes. Comparisons between experimental data and present CC

predictions, which include a treatment of the non-locality of the surface absorption.

parameters �2 and �4 of each isotope will di�er in the CC calculations. The parameters used in the
present calculations have values close to those published earlier [6].

In Fig.4 are shown our predictions for 184W and comparisons with measured elastic and inelastic scat-
tering cross sections. As can be seen, the predictions compare very well with the data. This comparison
is extended to total cross sections in Fig.5. Again, the agreement between predictions and measurements
is very good.

5 Global OMP properties

In Figs.6(a) and 6(b) are shown the real and imaginary components of our neutron and proton OMPs
through their volume integrals JV =A and JW =A, respectively, as functions of incident energy.

In each plot for JV =A, two curves are shown; the dashed line represents the smooth Hartree-Fock com-
ponent, and the continuous curve is the sum of the HF and dispersive components. The DR components
are calculated including the non-locality of the surface absorption.

In each plot for JW =A, three curves are shown; the dotted line is for volume absorption, the dashed
line is for surface absorption, and the continuous curve represents the sum of these two components. It is
interesting to notice that the competition between surface and volume absorption at low incident energies
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depends upon the probe. These features probably reect target structure e�ects.
In Fig.6(c) are shown the volume integrals J�V =A of the DR surface terms for incident protons and

neutrons. The continuous curves are obtained including non-locality in the CC calculations. The dashed
curves are for CC calculations in which the range of non-locality is set to zero.

The e�ect of including the non-locality in the calculations is a weakening of the dispersive terms as
E increases.

6 Conclusion

In this work we have presented a dispersive CC analysis of nucleon scattering and reaction measurements
up to approximately 200 MeV for deformed nuclei with A = 181 - 186. The excellent overall agreement
obtained between predictions and experimental data would not have been possible without including
dispersive terms in the calculations. The range of non-locality, 1:2 � � � 1:4fm, has been deduced for
the surface absorption. Obviously, new high precision scattering and reaction measurements for the W
isotopes (and other deformed nuclei) up to 200 MeV are necessary to establish our analysis on �rmer
grounds and con�rm our present results.
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