

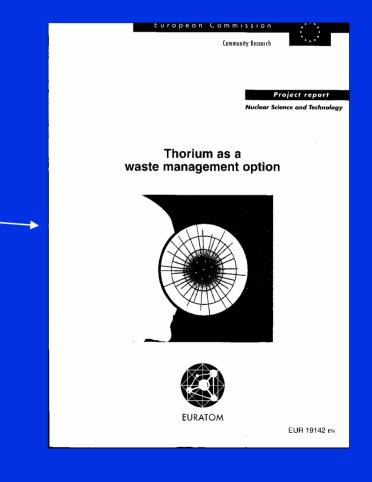
Nuclear Sciences and Technology Services

Radiotoxicity of thorium fuel cycles in PWRs

Kevin Hesketh

ARWIF 2005

Motivation



Nuclear Sciences and Technology Services

 Aim to quantify radiotoxicity of thorium fuel cycles compared with standard UO₂ oncethrough fuel cycle

 Complements and provides independent confirmation of earlier European 4th Framework studies

 BNFL has contributed to thorium studies in 5th
Framework and will contribute to 6th Framework activities

Scope

- Analyse thorium-uranium and plutonium-thorium fuel cycles in standard PWR fuel assemblies
- Limited to conceptual calculations of radiotoxicity without verifying practicality of core nuclear design characteristics
 - –4th Framework study has already demonstrated satisfactory reactivity coefficients for the moderate discharge burnup assumed here

Modelling method

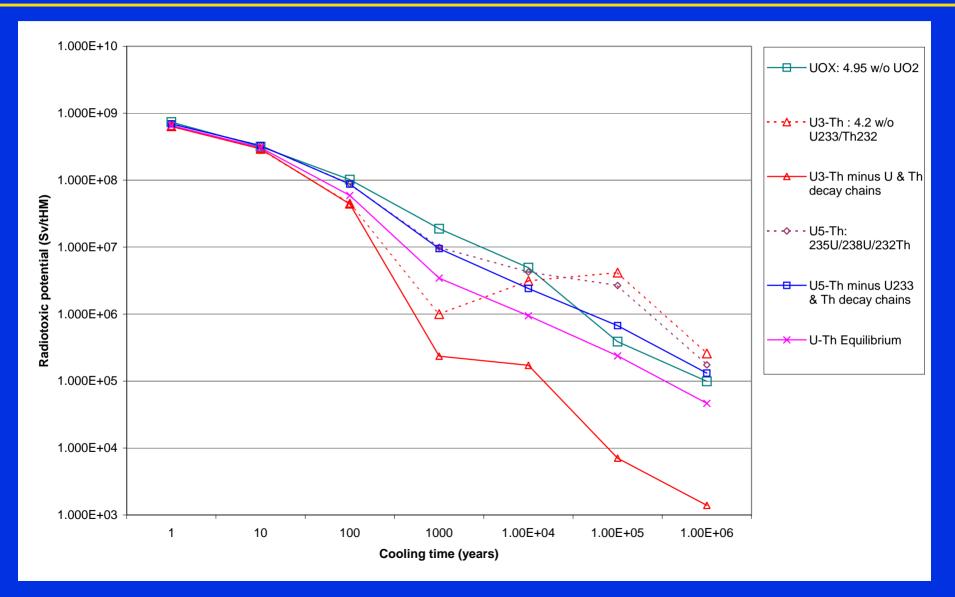
- JEF2.2 nuclear data
- CASMO-4 assembly spectrum calculations and 3-group cross-section condensation
- CAS2FIS processing of 3-group burnup dependent crosssections and fluxes
- FISPIN inventory calculations
- RTOX post-processes FISPIN inventory output to calculate radiotoxicities using ICRP-72 effective dose coefficients for ingestion

PWR parameters

- Standard 17x17 fuel design
- 3-batch fuel cycle
- 57 GWd/t average discharge burnup
- THOREX reprocessing applied with ²³³U and ²³²Th recycled
 - -But no attempt to recycle ²³⁵U and Pu

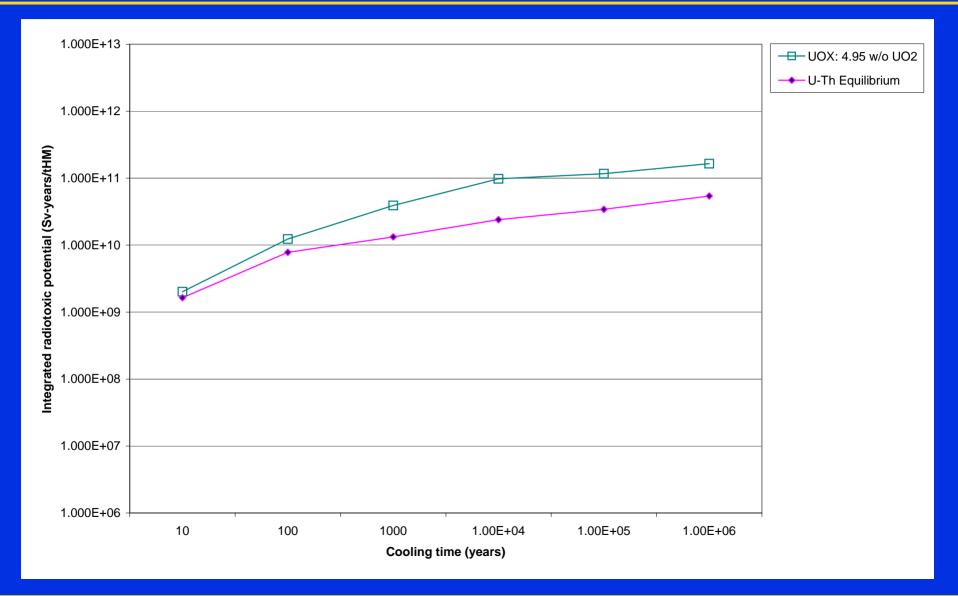
- UOX : 4.95 w/o UO₂ fuel with direct disposal cycle to act as a reference for comparison
- U3-Th: ²³³U0₂/²³²ThO₂ fuel with 4.18 w/o ²³³U and 95.82 w/o ²³²Th recycled to extract ²³³U and ²³²Th
- U5-Th: U0₂/²³²ThO₂ fuel with heterogeneous mix of 20 w/o enriched UO₂ rods and ²³²ThO₂ rods
 - Smeared composition 6 w/o ²³⁵U, 24 w/o ²³⁸U and 70 w/o
 - -232ThO₂ rods recycled to extract ²³³U and ²³²Th
 - -UO₂ rods not recycled
 - Equilibrium core consists of 35%:65% mix of U3-Th & U5-Th assemblies self-sufficient in ²³³U

²³³U balance



- U3-Th ²³³U discharge inventory 1.85 w/o
- U5-Th²³³U discharge inventory 1.23 w/o
- These discharge masses match the ²³³U mass for fresh U3-Th at 35% core U3-Th fraction
- Compared with UOX cycle, ²³⁸U conversion to plutonium is smaller and transuranic contributions to radiotoxicity reduced
- Radiotoxic contributions of U and Th decay chains removed from total on the assumption they are recycled indefinitely

-Overstates benefit compared with realistic finite scenario


instantaneous radiotoxicities

Uranium-thorium integrated radiotoxicities

Uranium-thorium results

Nuclear Sciences and Technology Services

Equilibrium uranium-thorium cycle has lower radiotoxicity by factor ~5 after 1000 years

-Integrated radiotoxicity lower by factor ~3 after 1E6 years

-²³³U contribution peaks at ~1E5 years in uncorrected radiotoxicity curves

 European 4th Framework study indicated factor ~ 2 reduction for a very similar scenario, but with only 2 recycle steps

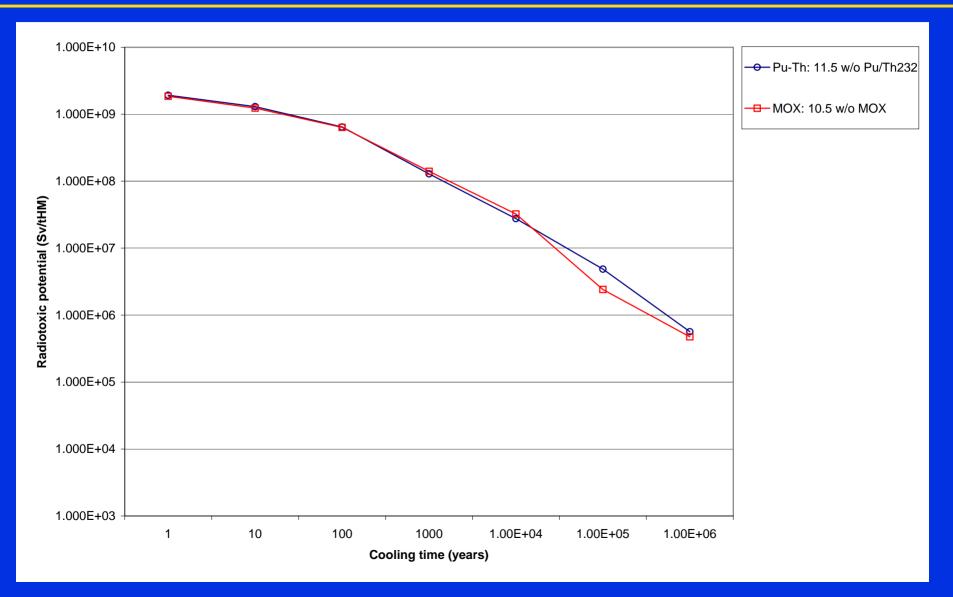
-233U peak at 1E5 years also noted

-Results considered consistent within limitations

Plutonium-thorium fuel cycle

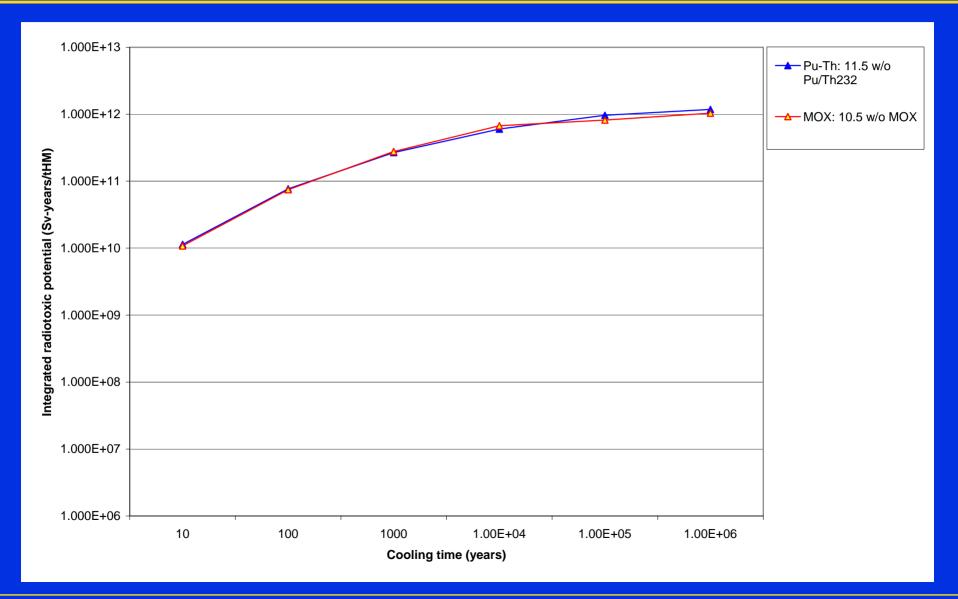
- Aim is to compare relative merits of conventional MOX fuel and Pu-Th fuel for plutonium disposition
- 17x17 conventional PWR assembly design, 57 GWd/t average discharge burnup 3-batch fuel cycle
- Once-through fuel cycle, so Pu assemblies undergo geological disposal

Plutonium-thorium fuel cycle



Nuclear Sciences and Technology Services

Pu-Th : PuO₂/ThO₂ assembly with 11.5 w/o Pu^{tot}
MOX : Conventional PuO₂/UO₂ assembly with 10.5 w/o Pu^{tot} to act as a reference


instantaneous radiotoxicities

Plutonium-thorium ntegrated radiotoxicities

Nuclear Sciences and Technology Services

Very little distinction between Pu-Th and MOX instantaneous and integrated radiotoxic inventories

-identical result noted in 4th Framework study

- However, net Pu destruction in Pu-Th is 122 kg/TWhe (compared with 64 kg/TWhe for MOX) and Pu isotopic quality is significantly poorer
 - -Lower proliferation risk for Pu-Th
 - -Offset by ²³³U inventory

Conclusions

- The self-generated equilibrium U3-Th & U5-Th cycle shows a modest reduction in radiotoxicity by a factor of ~5 wrt once-through UO₂ cycle
- The full benefit would not be obtained with a finite number of recycle steps
- Pu-Th fuel radiotoxicity is very little different from conventional MOX assembly, although discharge Pu mass is significantly lower
- Whether Pu-Th fuel represents a reduced proliferation risk is debatable, because of ²³³U