Berkeley NPP

• Twin Magnox Reactors
• Operating 1962 – 1989
• First UK commercial reactor to enter decommissioning
• Currently managed on behalf of the Nuclear Decommissioning Authority by Energy Solutions Inc.
• Boilers deplanted in 1997
• Full care & maintenance status by 2021
• Final site clearance in 2070’s
Berkeley Boilers

• 8 boilers (heat exchangers) per reactor
 – Length: 21 meters
 – Diameter: 5 meters
 – Weight: 310 tonnes

• Total activity of ~40 GBq/boiler

• Dose rates up to 50µSv/hr

• One boiler sized reduced on site in the 1990’s

• Remaining 15 stored horizontally

• Lifetime plan was for boilers to remain until 2070’s
Studies
Graduate Study 2010 – Treat Now?

- Government LLW Policy, 2007
 - Presumption to Early Solutions
- National Low Level Waste (LLW) Strategy, 2010
- For LLW metals the Best Available Technique is to treat/recycle
- Noticeable change to the site skyline
- Provides base load for supply chain
- Remains LLW if stored to final site clearance on site, so why not do it now?
 - Storage saddles in need of replacement,
 - Undue loading of reactor basement walls
- Funding available “in year”
Feasibility Study – March 2011

• Suitable route available that minimises road transport
 • Road to Sharpness Docks
 • Barge to Avonmouth as Sharpness access is limited
 • Sea going vessel to Sweden

• Route survey undertaken as part of the transport study identified challenges on route
 • Telephone cables
 • Utilities
 • Street furniture
 • Bridges/culverts
 • Tree trimming
 • Road closures
Stakeholders & Regulators

Early Engagement

- Office for Nuclear Regulation
- Environment Agency
- Site Stakeholders Group
- Swedish Regulator SSM
- Finnish Regulator STUK
- Maritime & Coastguard Agency
- Gloucestershire County Council
- Highways Agency
- Port Authorities & Trustees
Conclusions

• Transport as whole units was feasible
• SCO-1 Criteria met
• Initial Regulatory interaction was positive
• Methods were proven
• Preparatory Works should be carried out to reduce project risk
 – Health Physics Surveys and Characterisation
 – Non Destructive Examination
 – Engineering Design Assessment
 – Bridge & Culvert Assessment
 – Transport and Load Planning
 – Trans Frontier Shipping Approval
 – Confirmation of Transport Category

Preparatory work was key to unlocking the project and exploiting in-year funding
Tendering Programme

• Competitive Tendering Exercise August 2011
 – New Constraint – Ground Loadings due to underground structures

• Project Funding possible late 2011 – “Flywheel”

• Key Driver – Specified number of boilers off site by 31st March 2012
 This was Lot 1 : Minimum 1 x boiler : Studsvik Proposed 5 x boilers

• Remaining boilers to be dealt with under separate contract (Lot 2)

• All preparatory work identified in study was still required

• Lot 2 was re- bid in August 2012 for removal of remaining boilers by 31st March 2013
Contract Programme

<table>
<thead>
<tr>
<th>Event</th>
<th>Lot 1</th>
<th>Lot 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract award:</td>
<td>4<sup>th</sup> Nov 2011</td>
<td>5<sup>th</sup> Nov 2012</td>
</tr>
<tr>
<td>Highways Agency approval:</td>
<td>12<sup>th</sup> Jan 2012</td>
<td>16<sup>th</sup> Nov 2012</td>
</tr>
<tr>
<td>TFS Approval:</td>
<td>19<sup>th</sup> Jan 2012</td>
<td>In place</td>
</tr>
<tr>
<td>Lift 1<sup>st</sup> boiler:</td>
<td>25<sup>th</sup> Feb 2012</td>
<td>12<sup>th</sup> Jan 2013</td>
</tr>
<tr>
<td>Transport 1<sup>st</sup> boiler:</td>
<td>16<sup>th</sup> Mar 2012</td>
<td>22<sup>nd</sup> Feb 2013</td>
</tr>
<tr>
<td>Transport last boiler:</td>
<td>22<sup>nd</sup> Mar 2012</td>
<td>15<sup>th</sup> Mar 2013</td>
</tr>
<tr>
<td>Last boiler in Sweden:</td>
<td>6<sup>th</sup> Apr 2012</td>
<td>31<sup>st</sup> Mar 2013</td>
</tr>
</tbody>
</table>
Design Considerations
Structural Integrity

Review of Component parts
- Boiler Shell
- Saddles
- Internal Structures
- Tubes

Assessment methods
- Design information
- Inspection & survey
- Operation & maintenance records
Penetrations – Method of Sealing
Design - Enabling Works

• Engineering
 – Weld Assessment
 – Finite Element Analysis
 – Loading Models

• Non Destructive Examination
 – Boiler Vessel
 – Seal Welds
 – Flanged Connections
 – Saddles
Project Delivery
Delivery - Enabling Works

- Project and Site Mobilisation

- Documentation
 - Project and Specific

- Regulatory Authorisations

- Substantiation
 - Design Integrity (engineering review, NDE)
 - Radiological Condition (surveys)
 - Radiological Characterisation (WAC Studsvik & LLWR)
 - Transport Category
 - Regulators (ONR RMTT, EA, HA, GCC, Port Authorities)
 - Boiler preparation
 - Ground Loading

Integral tasks that must be completed before lifting / transport could commence
Site Preparation

- Removal of ancillary steelwork
- Thermocouples / penetrations
- NDE & Visual Inspection
 - Boilers
 - Transport Saddles
- Welding
- Health Physics Surveys
 - Early completion
 - Regulatory checks
- Civil Preparations
Lifting and Site Transport
Lifting to skid tracks
Skidding & Transfer to Site Storage
Off site transport
Tranship to road trailer via SPT
Shipping operations
Video – First Project (Lot 1)
Treatment
Volume reduction & recycling - SWE

Large Components (BWR, Magnox)

- Arrival inspection
- Segmentation
- Blasting
- Melting
- Crushing (slag)

Secondary Waste

Free Release > 95%

Ingots
Processing

• Recovery of loose material
• Size reduction
• Decontamination of internal surfaces
• Smelting
• Casting of ingots for free release
 – Melting of metal ensures robust characterisation analysis
 – Representative sample “pucks”
 – Metal is released as per Studsvik license
Secondary Waste Management

- Volume reduced waste consists of:
 - Grit blasting dust from decontamination
 - Dust from ventilation systems
 - Slag from cutting and metal melting
 - Ash and dust from incineration

- All secondary waste packages are gamma analysed for radiological content

- Existing residual dust (including graphite) analysed for Carbon – 14.

- A comprehensive Final Report is generated during processing with radiological analysis data

- Use of standard packages for return of secondary waste
Project Outcomes – Secondary Waste

- **Volume:** < 12 m3
 - 95%+
- **Weight:** < 20 tonnes
 - >90%+

- **Volume:** ~ 650 m3
- **Weight:** ~ 310 tonnes
Lessons from Treatment
Transport Category – SCO1

Lot 1 Original Assumptions – Conservative

- Based upon micro-shield modelling activity was assumed to be x2 Magnox fingerprint i.e. 71GBq.
- Only surface area of the boiler shell was considered for contamination distribution i.e. 3,520,000cm².

From Treatment Results

- Activity based upon measurements of all ingot batches and every secondary waste drum = 14 to 22GBq.
- Internal structures excluding tube fins account for more than 130,000,000cm²
- External dose rates correlated well to measurements during treatment

Considered for Lot 2 & supported by Regulators
Lessons from Treatment

- Very small amount (5kg) of residual material so far from 12 boilers.
- Internal components and materials have not deteriorated.
- Flanged assemblies contain Metaflex gaskets (Asbestos)
Lessons from the Project

Early evaluation of project
- Identification of uncertainties and risks
- Early enabling / preparatory works

Early engagement of stakeholders (international)
- Regulators
- Interested Groups
- Site personnel
- Client(s)
- Contractors

Collaboration between all parties
- Joint Risk Register
- Single schedule
- Weekly progress review
- Daily interaction
Conclusions

Lot 1
- First five Boilers completed
- 3 x HHISO LLW & 3 x HHISO LALLW

Lot 2
- All boilers delivered to Sweden by 31st March 2013
- Seven boilers now completed
- Treatment & return of secondary waste will complete by December 2014

Magnox Gas Circuit Large Components
- Can be safely transported
- Can be effectively recycled
- Small amount of secondary waste