Preliminary identification of α and β contaminations through Digital Autoradiography

Introduction
Digital Autoradiography is:
- A radioactivity-imaging technique (phosphor type)
- Performed through the in-situ exposure of 2-D screens
- Non-destructive (no wastes; reusable screens)
- Sensitive to all types of radioactivity (α, β incl. 3H, γ/X)
- Sensitive to both labile and fixed radioactivity
- Semi-quantitative (activity in Bq/cm²) after calibration
- Recently applied to α/β radiological mapping, and to the preliminary characterization of various samples (drilled cores, pieces of furniture, tank blocks, rubble, dust, wastes…)

Screen stacking method
Signal transmission sequences for radionuclides commonly met in dismantling ($S_n = $ signal measured on screen n)

Steel block from a tank

MCNPX modeling

Preliminary and non-destructive identification of samples showing high (problematical) traces of 35Cl

Contribution of modeling for the elucidation of mixtures of radionuclides (quantitative evaluation) ➔ promising first results

Dealing with the case of non-through radiations

Previous abilities for contamination detection:
- accurate location
- shape and structure
- inhomogeneity (hot points)

Targeted additional ability:
Radioactivity type identification to preliminary evaluate activity without destructive analysis

Wastes preliminary discrimination

Preliminary abilities
- Identification of contaminating radionuclide and, in turn, evaluation of contamination activity, through non-destructive Digital Autoradiography only, subject to certain conditions.

Evaluation of:
- Contamination depth
- Relative contamination profile
- Hot spots location

MS/TR = 1.6

Contamination mainly due to 14C

Concrete drilled core
Stacking : S_{n+1} (S_n > 0) ➔ MS/TR comparison

<table>
<thead>
<tr>
<th>Rad. nucl.</th>
<th>Emission (mean energy)</th>
<th>MS/TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H</td>
<td>β (5 keV)</td>
<td>0.001</td>
</tr>
<tr>
<td>233U</td>
<td>α (4.8 MeV)</td>
<td>0.39</td>
</tr>
<tr>
<td>239Pu</td>
<td>α (5.1 MeV)</td>
<td>0.46</td>
</tr>
<tr>
<td>241Am</td>
<td>α (5.5 MeV)</td>
<td>0.49</td>
</tr>
<tr>
<td>244Cm</td>
<td>α (5.8 MeV)</td>
<td>0.55</td>
</tr>
<tr>
<td>56Fe</td>
<td>β (50 keV)</td>
<td>1.0-1.6</td>
</tr>
<tr>
<td>56Co</td>
<td>β (100 keV) + γ (1.25 MeV)</td>
<td>3.0</td>
</tr>
<tr>
<td>56Ti</td>
<td>β (200 keV) + γ (0.66 MeV)</td>
<td>4.7</td>
</tr>
<tr>
<td>35Cl</td>
<td>β (240 keV)</td>
<td>5.0</td>
</tr>
<tr>
<td>85Sr</td>
<td>β (320 keV)</td>
<td>6.1</td>
</tr>
<tr>
<td>40K</td>
<td>β (510 keV) + γ (1.5 MeV)</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Concrete floor mapping

MS/PH screen and scanner

Concrete drilled core
Stacking : S_{n+1} (S_n > 0) ➔ MS/TR comparison

Evaluation of:
- Contamination depth
- Relative contamination profile
- Hot spots location

MS/TR = 1.6

Contamination mainly due to 14C

Reaching activity profile in Bq/cm²

Tuesday 16th • Thursday 18th February 2016
Lyon Convention Centre • France

Raphaël HAUDEBOURG, Pascal FICHET, CEA Saclay, DEN/DANS/DP/maxis-LASE, CC171, 91191 Gif sur Yvette Cedex, France, raphael.haudebourg@cea.fr