Comparison of standardised decommissioning costing tools on pilot Vienna TRIGA MARK-II research reactor

Kristina Kristofova¹,³ Martin Hornacek¹, Matej Zachar¹,² Thomas Stummer⁴; Vladimir Slugen¹

¹ Institute of Nuclear and Physical Engineering, FEI STU Bratislava
² DECOM, a.s.; ³ Vienna University of Technology, Atominstitute Vienna

WS on Current and Emerging Methods for Optimising Safety and Efficiency in Nuclear Decommissioning

7-9 February, 2017, Sarpsborg, Norway
Decommissioning costing for research reactors

Typical approach:
1. IAEA standardised costing platform: International Structure for Decommissioning Costing of Nuclear Installations (ISDC)

2. IAEA recommended costing methodology: CERREX code (Cost Estimation for Research Reactors in EXcel) developed within IAEA projects – used for preliminary cost estimation

 Basic CERREX costing case developed for the facility

3. CERREX code calculation results compared with any other calculation costing tool or with estimates on similar facility

4. Sensitivity analyses to identify and analyse the impact of changes of input parameters on the results of decommissioning costing
International Structure for Decommissioning Costing

- Numbered matrix of typical decommissioning activities and cost categories
- Common platform for presenting of decommissioning cost of any type of nuclear installation
- Standardized hierarchical structure with three numbered level

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Principal activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 2</td>
<td>Activity groups</td>
</tr>
<tr>
<td>Level 3</td>
<td></td>
</tr>
</tbody>
</table>

Cost Categories are defined which are to be allocated at each ISDC level

<table>
<thead>
<tr>
<th></th>
<th>Cost items (typical decommissioning activities) with detailed definitions and examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total costs</td>
<td>Labour costs</td>
</tr>
</tbody>
</table>

Cost calculation structure (any type)
Model ATI costing case calculations objectives

The main purpose:
To compare CERREX decommissioning costing with the advanced - new generation calculation methodology applied in eOMEGA_RR code

Object of model cost calculations: TRIGA Mark II reactor in Vienna
- Vienna University of Technology, Atominstitute
- Under operation since 1962
- Thermal power output 250 kW
Model ATI costing case calculation methodology

Implemented step-by-step procedures:

1. Inventory database development including physical & radiological parameters
2. Advanced decommissioning costing cases created using CERREX and eOMEGA_RR code
3. Sensitivity analyses performed in eOMEGA_RR code
4. Benchmarking of costing results obtained from both cost calculation codes

WS on Current & Emerging Methods for Optimising Safety & Efficiency in Decommissioning, 2/2017, Sarpsborg, Norway
Step 1 - ATI inventory database (1)

1. Database structure corresponds to ISDC costing approach
2. Database template in Excel with hierarchical structure:

 - List of Buildings
 - List of Floors
 - List of Rooms + parameters
 - List of Equipment + parameters

 - Identification data
 - Physical data
 - Hazardous materials
 - Radiological data
 - Calculation data

3. Supporting interconnected Excel spreadsheets: ISDC items, technological systems, CERREX inventory categories, materials, radionuclides, radionuclide vectors, RAW limits

4. Waste streams considered:
 - exempt waste – free released material
 - conditionally released metals, conditionally released other materials
 - long-term storage waste
Step 1 - ATI inventory database (2)

1. No building structures other than reactor concrete shielding structures are included, since no demolition works are planned

2. 59 technological equipment from the reactor building

3. Material inventory - 532 t (96% concrete shielding)

4. Total radiological inventory of 2.11 E+13 Bq estimated at the end of operation (top activity – stainless steel components)
Step 2.1 - ATI CERREX costing case development

- Inventory database implemented to the CERREX code

- Definition of ISDC items for inventory dependent actions:
 - Definition of input parameters (unit factors, waste distribution coefficients, work difficulty factors) for inventory dependent activities e.g. dismantling, decontamination, waste management activities
 - Definition of input parameters (duration, workgroup composition, expenses, investments) for period dependent activities and collateral costs e.g. management of project, maintenance, surveillance, procurement, taxes
 - Definition of general calculation parameters e.g. labour rates for basic professions;

- Analysis of the obtained results for basic calculation case (costs and manpower in ISDC format)

<table>
<thead>
<tr>
<th>04.0502</th>
<th>Dismantling of reactor vessel and core components</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.0503</td>
<td>Dismantling of other primary loop components</td>
</tr>
<tr>
<td>04.0506</td>
<td>Dismantling of external thermal/biological shields</td>
</tr>
<tr>
<td>04.0601</td>
<td>Dismantling of auxiliary systems</td>
</tr>
<tr>
<td>04.0701</td>
<td>Dismantling of embedded elements in building</td>
</tr>
<tr>
<td>04.0702</td>
<td>Removal of contaminated structures</td>
</tr>
<tr>
<td>04.0703</td>
<td>Decontamination of buildings</td>
</tr>
<tr>
<td>05.0900</td>
<td>Management of decommissioning LLW</td>
</tr>
<tr>
<td>05.1200</td>
<td>Management of decommissioning EW and materials</td>
</tr>
</tbody>
</table>
Step 2.2 - ATI eOMEGA_RR pilot costing case

- eOMEGA_RR - a version of the code eOMEGA focused on the decommissioning costing of research reactors with some limited functionalities

- eOMEGA = Connection of two existing and matured solutions:
 1. OMEGA decommissioning software fully implementing ISDC and unique tool for simulation the material and radioactivity flow in the decommissioning process
 2. Flexible and user-friendly web-based platform ADIOS

- ATI eOMEGA_RR costing case - a pilot demonstration of the code
- The same input data as for CERREX costing case were used
Step 2.3 - ATI eOMEGA_RR costing case results

- Calculated results in ISDC structure case – immediate dismantling

<table>
<thead>
<tr>
<th>ISDC No.</th>
<th>Name of ISDC item</th>
<th>Workforce (manhour)</th>
<th>Total costs (EUR)</th>
<th>Labour costs (EUR)</th>
<th>Investments (EUR)</th>
<th>Expenses (EUR)</th>
<th>Contingency (EUR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>157 000</td>
<td>13 446 900</td>
<td>7 590 600</td>
<td>940 700</td>
<td>2 986 000</td>
<td>1 929 500</td>
</tr>
<tr>
<td>01</td>
<td>Pre-decommissioning actions</td>
<td>7 000</td>
<td>562 000</td>
<td>386 400</td>
<td>0</td>
<td>92 300</td>
<td>83 300</td>
</tr>
<tr>
<td>02</td>
<td>Facility shutdown activities</td>
<td>2 900</td>
<td>250 400</td>
<td>132 200</td>
<td>0</td>
<td>76 400</td>
<td>41 700</td>
</tr>
<tr>
<td>04</td>
<td>Dismantling activities within the controlled area</td>
<td>37 700</td>
<td>3 692 500</td>
<td>1 693 800</td>
<td>765 700</td>
<td>458 600</td>
<td>774 400</td>
</tr>
<tr>
<td>05</td>
<td>Waste processing, storage and disposal</td>
<td>17 100</td>
<td>2 420 300</td>
<td>709 400</td>
<td>150 000</td>
<td>1 157 500</td>
<td>403 400</td>
</tr>
<tr>
<td>06</td>
<td>Site infrastructure and operation</td>
<td>31 500</td>
<td>1 945 900</td>
<td>1 361 300</td>
<td>25 000</td>
<td>339 800</td>
<td>219 800</td>
</tr>
<tr>
<td>08</td>
<td>Project management, engineering and support</td>
<td>60 800</td>
<td>4 365 900</td>
<td>3 307 500</td>
<td>0</td>
<td>661 500</td>
<td>396 900</td>
</tr>
<tr>
<td>11</td>
<td>Miscellaneous expenditures</td>
<td>0</td>
<td>209 900</td>
<td>0</td>
<td>0</td>
<td>199 900</td>
<td>10 000</td>
</tr>
</tbody>
</table>

- Quantities of waste streams – immediate dismantling

<table>
<thead>
<tr>
<th>Type of material</th>
<th>Quantity</th>
<th>Unit</th>
<th>Activity [Bq]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material released to environment (unconditionally)</td>
<td>473.26</td>
<td>t</td>
<td>1.82E+05</td>
</tr>
<tr>
<td>Material released to environment (conditionally)</td>
<td>1.37</td>
<td>t</td>
<td>1.59E+06</td>
</tr>
<tr>
<td>Radioactive waste</td>
<td>57.29</td>
<td>t</td>
<td>1.38E+13</td>
</tr>
</tbody>
</table>
Step 3.1 - Sensitivity analyses

Objective: To identify and analyse the impact of input data uncertainties on the resulting costs, workforce and waste quantities from decommissioning process.

ATI calculation case – sensitivity analyses in eOMEGA_RR code:
1. Effect of deferred dismantling – 50 years safe enclosure
2. Higher level of activation – 10 times
3. Extended duration of the project – 1 year extension
Step 3.2 – Results from sensitivity analyses (1)

Analysis No.1 - Effect of deferred dismantling – 50 y:

1. Radioactive decay of nuclides $\xrightarrow{}$ reclassification of some materials from radioactive waste to materials to be released to environment

2. Additional operational costs (mainly site operation, site security or taxes and insurances)

Results:

• Reduced costs for waste management (almost 50%)
• Increase of operational costs
• The **total costs** – *about 15% higher* compared with immediate dismantling
Step 3.2 - Results from sensitivity analyses (2)

Analysis No.2 - Effect of higher level of activation – 10-times:

1. Inaccuracy of the radiological inventory input data
2. Investigation of impact on decommissioning costs

Results:

- Only small increase of radioactive waste quantities (about 2%)
- Small increase of the total costs (about 1%)
- Inventory dependent activities do not represent majority of costs as for bigger facilities
- Suitable more detailed analysis with different levels of activation
Step 3.2 - Results from sensitivity analyses (3)

Analysis No.3 - Extended duration - from 5 to 6 years:

• Expected increase of costs for period dependent activities

Results:

• Increase of mainly labour costs (about 12%)
• Increase of the total costs (about 10%)
Step 4.1 - Benchmarking of eOMEGA_RR with CERREX

Basic scheme:

- ATI Costing case
- CERREX
- eOMEGA_RR
- Comparison of the results
- Difference of total costs – about 2%
Step 4.2 - Benchmarking results (1)

• Period dependent activities:
 • CERREX – period specific data introduced as €/year (exact values)
 • eOMEGA_RR – period specific data introduced as €/hour (rounded values)

• Different considerations for working groups:
 • CERREX – simplified working groups („average worker“ – one labour rate)
 • eOMEGA_RR – working group with several professions (specific labour rates)

• Different ways for calculation parameters of remote dismantling:
 • CERREX – separate dismantling category with unit factors for remote dismantling
 • eOMEGA_RR – remote dismantling based on the input radiological parameters or by using the specific work difficulty factors defined by the user
Step 4.2 - Benchmarking results (2)

- Different ways for application of work difficulty factors (WDFs):
 - CERREX – all the WDFs defined manually by the user
 - eOMEGA_RR – some of WDFs calculated automatically by the code algorithm based on the specific input parameters

- Decomposition of inventory items:
 - CERREX – tool for decomposition of materials not available
 - eOMEGA_RR – all the inventory items decomposed on the one-materials components

- Different algorithm for calculation of waste and material quantities:
 - CERREX – quantities based on the user’s defined partitioning for individual inventory items into waste types
 - eOMEGA_RR – unique tool for simulation the materials and radioactivity flow
Conclusions

- ATI model costing case – a successful demonstration of eOMEGA_RR code on research facility
- CERREX as well as eOMEGA_RR codes have fully implemented ISDC structure and methodology and meet the actual international requirements, trends and best practices in the decommissioning costing
- Major advantages of eOMEGA_RR vs. CERREX:
 1. More detailed cost calculations of inventory dependent activities
 2. Automatic sorting of material due to incorporated unique tool for simulation the material and radioactivity flow
 3. Sensitivity analysis tool allowing to compare automatically multiple costing cases
 4. User-friendly environment and online access
- Presented ATI model costing case can be easily modified for other TRIGA reactors
Thank you for your attention!

ACKNOWLEDGEMENT

Authors would like to thank to the Slovak ministry of education, science, research and sport for grant No: 001STU-2/2014-CEPVYJZ, to Atom institute Vienna for their close cooperation and to IAEA for their support.

kristina.kristofova@kind-consultancy.com