Fifth workshop on Science and Values in Radiological Protection Decision making

Group C: Ethics of radiological protection in Occupational Exposure situations
Chair Thierry Schneider
Rapporteur: Augustin Janssens
Input from Day 1 presentations

• Ingemar Lund:
 ✓ Bio-markers,
 ✓ Non-cancer effects
 ✓ Need for training and dialogue

• Nicole Martinez:
 ✓ Analysis of ethical foundations of RP System
 ✓ Pillars of Justice and Accountability (solidarity)
 ✓ Engage Stakeholders in ethical decision making

• Don Cool:
 ✓ Would we do things differently if we knew more about the science?
 ✓ Different management of internal and external exposure?
 ✓ Balanced all-hazards approach

• Jacques Repussard:
 ✓ Conservatism in dose estimates, need for monitoring
 ✓ Regulatory issues (RP framework, dose limits, application to specific situations)
 ✓ Unforeseen occupational exposures (post-accidental)
 ✓ Leadership of the RP Expert
Uncertainties and value judgements

• Uncertainties in biological effects:
 ✓ Move in society towards protection of the individual
 ✓ If combined with evidence of individual sensitivity, puts strain on the RP System

• New exposure situations (NORM, radon)
 ✓ Experts trained in RP often have little knowledge of these situations
 ✓ In NORM industries, radiation is not the main concern, how then to apply ALARA?

• Concept of occupational exposure
 ✓ Broad definition: exposure at work
 ✓ Potentially very large number of workers
 ✓ Need distinguish “exposed worker” and “radiation worker”
 ✓ Responsibility of employer/undertaking
 ✓ Radiation worker: specific training, responsibility for own protection, and for safety of other workers, members of the public or patients
 ✓ Occupational health service with specific responsibilities
Uncertainties and value judgements

• Conservatism in dose assessment
 ✓ Difficult to anticipate actual exposures by design
 ✓ Conservatism not compatible with ALARA
 ✓ Importance of worker’s own attitude (benefit of monitoring)
 ✓ Monitoring in NORM industries: individual exposures or workplace assessment

• Broader all-hazards approach:
 ✓ Judgment of the radiation protection expert
 ✓ Bias about importance of radiation effects
 ✓ Lack of knowledge about other aspects

• Post-accidental situations
 ✓ Steel works and scrap metal dealers: orphan sources are a known risk
 ✓ Post-accidental contamination, need for guidelines?
 ✓ Need for an approach to be implemented promptly in case of an accident?
 ✓ Values are the key parameters!

• Probability of causation
 ✓ Uncertainties in cancer causation
 ✓ Non-cancer effects
 ✓ Different approaches for compensation
Values underlying the RP system

• Biological science
 ✓ Importance of continued fundamental research
 ✓ For occupational protection: current knowledge is a sufficient basis
 ✓ Be open of unexpected scientific results
 ✓ Prudence and accountability require emerging issues to be flagged
 ✓ If biomarkers would be found, their existence should not be hidden

• RP System has developed its own paradigms
 ✓ Historical: Euratom Treaty, international BSS
 ✓ Initial focus on nuclear energy, industry
 ✓ Expertise within the radiation protection community, RP authorities, not elsewhere
 ✓ Comprehensive RP System, needs to be fine-tuned to the new situations
 ✓ Differences ICRP and international standards
 ✓ Build framework for occupational radiation protection on the basis of the science and of the values at stake
Future issues, later workshops

• Broader expertise
 ✓ Occupational health officers in other disciplines, other hazards
 ✓ Occupational medicine

• Interaction between:
 ✓ Radiation protection and (nuclear) safety culture
 ✓ Protection of workers and members of the public

• Examine the application of the core ethical values for occupational protection
 ✓ Beneficence/non-maleficence
 ✓ Prudence
 ✓ Justice/equity
 ✓ Fairness
 ✓ Procedural values
 ✓ ...
 ✓ ...