SAFETY ISSUES & SAFETY INDICATORS FOR ACCELERATOR DRIVEN TRANSMUTERS WITH DEDICATED OXIDE FUELS

W. Maschek, Magnus Mori, A. Rineiski
Institute for Nuclear Energy Technologies (FZK/IKET)
Hermann-von-Helmholtz-Platz, 1
D-76344 Eggenstein-Leopoldshafen
Germany
ADS OVERVIEW

PDS-XADS (80 MWth – LBE)

- Subcritical system with excellent safety parameters *(MOX fuel)*:
 - Negative core void worth
 - Low q’, Doppler, kinetics etc.

- Accident investigations reveal benign transient behavior *(not surprisingly)*:
 - Design Basis Conditions
 - Design Extended Conditions
 - Severe Accidents

- Even under DEC or severe conditions - **NO** 'fast or direct' path towards an energetic scenario exists

- Limited discussion on 'consequences' of severe scenarios 😞
ADT OVERVIEW

ADT (800 MWth – LBE)

- Investigations within FUTURE Program (5th FP of EU)
- Dedicated fuels with high MA content + inert matrices (CERCER, CERMET)
- Subcriticality margin ~ 3000 pcm
- Safety analyses of LBE cooled ADTs with dedicated fuels show that:

 THE VOID WORTH MIGHT BE HIGHER THAN SUBCRITICALITY MARGIN

QUESTION:

Do we have to eliminate some fuels (& matrices) a priori from further consideration?
ADT FUELS

Fuel Characteristics of ADTs

- **Dedicated fuel:**
 - **CERCER:**
 - $(\text{Pu,An,Zr})\text{O}_x$
 - $(\text{Pu,An})\text{O}_x - \text{MgO}$
 - **CERMET:**
 - $(\text{Pu,An})\text{O}_x - 92\text{Mo}$

- **Double tier strategy** to maximize incineration rates characterized by:
 - High MA (Pu) content
 - No fertile material such as U238

- **MAs ⇒ deteriorating impact on:**
 - Fuel thermal-physical properties
 - Core safety parameters

- **Balanced by subcriticality**

![Graph](image)
Impact on Thermal-Physical Properties

Potential Impact on Safety Related Fuel Properties ((Pu, Am, Cm)O₂):

- Reduced melting point (2600 K)
- Reduced thermal conductivity
- Actinide redistribution (AmO₂)
- Clad corrosion
- Separation/segregation processes
- Helium release!

Composite fuels with improved properties:

- CERCER
- CERMET
Impact on Core Parameters

Characteristics of *ADT* Core Safety Parameters:

- High coolant density & void worth
- High steel worth
- High fuel worth
- Low Doppler
- Low β-eff
- High helium release potential

- Subcriticality
- High LBE boiling temperature (1943K)
- Thermal structural expansion
More on ADTs Safety

- How should the safety issues be tackled?
- How should the analyses proceed?

Suggestions:

- A complete view of transients: *DBC & DEC*
- A look at *severe transients* within DEC
- Strengthening of preventive safety measures: *elimination of cliff edge effects*

Existing Problems:

- Elimination of subcriticality under core melt conditions (DEC) with deteriorated safety parameters
- Lack of prompt negative Doppler feedback

Power Excursion ‘Cliff Edge Effects’ & Potential Mechanical Disassembly
DEC Scenario with Pin Potential Damage & Failure Propagation

1. **Intact core**
2. **Local pin-disruption**
3. **Spread of disruption**

- Pump coast-down, Channel blockage
- Can-wall breakup

Sequence of Events:
- Plenum-gas leak through crack (gas blowdown)
- Clad melting (bubble & molten-steel release)
- Fuel particle release
Activation of Reactivity Potentials

Void Worth Potential:
- Activated via clad failure and blow-down of fission gases and He
- Clad failure before melting
- Leading in time sequence
- Overpower and under-cooling transients

Steel Worth Potential:
- Steel melting before coolant boiling
- Activated via under-cooling transients
- Unclad pin stubs

Fuel Worth Potential:
- Dominating after fuel mobilization
- Dispersal versus compaction (recriticality)
- 'If' floating under Pb/Bi conditions - where?
A closer look at: **Kinetics & Feedbacks**

Doppler:
- Stabilizing feedback
- Important under severe conditions (criticality) as only prompt negative feedback mechanism before mechanical core disassembly

Structural expansion:
- Axial expansion of fuel under transient conditions unknown (fuel/clad dominated?)
- Core (clamping, pads) and grid-expansion design-dependent

Kinetics parameters:
- Small beta-eff
- Potential reduction of neutron generation time

Interaction?
Impact of Void on Accident Development I

ULOFO SCENARIO for a CRITICAL Sodium Cooled Reactor

1. Pump coast down
2. ‘Na’ heat up & positive reactivity feedback
3. Doppler
4. Axial fuel expansion
5. Boiling and void release
6. Clad and fuel motion
7. Fuel motion (dispersal) reactivity dominates

Void Worth Potential of ~ + 5-7 $ NOT - consumed!
(timing)

If Void/Doppler Ratio ~ – 3
No severe energetic scenario
Critical Fast Reactor Cores

SAFETY PARAMETERS

<table>
<thead>
<tr>
<th></th>
<th>Monju</th>
<th>SNR 300</th>
<th>CAPRA 4/94</th>
<th>EFR CD/91</th>
<th>SPX-1</th>
<th>CAPRA 2000</th>
<th>DEDI -1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power MWth</td>
<td>714</td>
<td>760</td>
<td>3600</td>
<td>3600</td>
<td>3047</td>
<td>3600</td>
<td>150</td>
</tr>
<tr>
<td>Coolant worth pcm</td>
<td>802</td>
<td>770</td>
<td>1560</td>
<td>2100</td>
<td>1990</td>
<td>2322</td>
<td>1687</td>
</tr>
<tr>
<td>Doppler-wet pcm</td>
<td>-670</td>
<td>-600</td>
<td>-455</td>
<td>-650</td>
<td>-860</td>
<td>-723</td>
<td>260</td>
</tr>
<tr>
<td>(Void/Doppler-wet)</td>
<td>-1.2</td>
<td>-1.3</td>
<td>-3.4</td>
<td>-3.2</td>
<td>-2.3</td>
<td>-3.2</td>
<td>-6.5</td>
</tr>
<tr>
<td>Beta-eff pcm</td>
<td>360</td>
<td>347</td>
<td>324</td>
<td>362</td>
<td>357</td>
<td>345</td>
<td>126</td>
</tr>
<tr>
<td>Neutron generat. time 10^{-7} s</td>
<td>4.4</td>
<td>4.2</td>
<td>8.4</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Typical reactivity potentials, Doppler constants and kinetic parameters for various critical fast reactors

(extensive safety investigations performed for most of these cores)

Proven Safety Case
(first 6 cores)
SAFETY PARAMETERS

<table>
<thead>
<tr>
<th>Fuel Matrix</th>
<th>CERCER: ZrO₂</th>
<th>CERCER: MgO</th>
<th>CERMET Mo-92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant Worth pcm</td>
<td>6235</td>
<td>4840</td>
<td>3548</td>
</tr>
<tr>
<td>Subcriticality margin pcm</td>
<td>-3000</td>
<td>-3000</td>
<td>-3000</td>
</tr>
<tr>
<td>Doppler-wet pcm</td>
<td>7</td>
<td>-3</td>
<td>-34</td>
</tr>
<tr>
<td>Beta-eff pcm</td>
<td>190</td>
<td>182</td>
<td>198</td>
</tr>
<tr>
<td>Neutron generat. time 10⁻⁸⁷ s</td>
<td>5.9</td>
<td>4.4</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Void/Doppler Ratio

~ -1600 ÷ +900!

LMFR

<table>
<thead>
<tr>
<th>Power</th>
<th>Monju</th>
<th>SNR 300</th>
<th>CAPRA 4/94</th>
<th>EFR CD/91</th>
<th>SPX-1</th>
<th>CAPRA 2000</th>
<th>DEDI-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWth</td>
<td>714</td>
<td>760</td>
<td>3600</td>
<td>3600</td>
<td>3047</td>
<td>3600</td>
<td>150</td>
</tr>
<tr>
<td>pcm</td>
<td>802</td>
<td>770</td>
<td>1560</td>
<td>2100</td>
<td>1990</td>
<td>2322</td>
<td>1687</td>
</tr>
<tr>
<td>Doppler-wet pcm</td>
<td>-670</td>
<td>-600</td>
<td>-455</td>
<td>-650</td>
<td>-860</td>
<td>-723</td>
<td>260</td>
</tr>
<tr>
<td>(Void/Doppler-wet)</td>
<td>-1.2</td>
<td>-1.3</td>
<td>-3.4</td>
<td>-3.2</td>
<td>-2.3</td>
<td>-3.2</td>
<td>-6.5</td>
</tr>
<tr>
<td>Beta-eff pcm</td>
<td>360</td>
<td>347</td>
<td>324</td>
<td>362</td>
<td>357</td>
<td>345</td>
<td>126</td>
</tr>
<tr>
<td>Neutron generat. time 10⁻⁸⁷ s</td>
<td>4.4</td>
<td>4.2</td>
<td>8.4</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>2.8</td>
</tr>
</tbody>
</table>
Impact of Void on Accident Development II

ULOФ SCENARIO for a SUB-CRITICAL LBE Cooled ADT

1. Positive reactivity feedback with approaching criticality
2. No Doppler
3. Axial fuel expansion
4. Heat-up of coolant (and fuel)
5. Pin/clad failure
6. Gas blow-down
7. Void reactivity driven excursion
8. Clad removal
9. Fuel dispersal

N.B.:

- Empirical reasoning deduced from critical reactor experience
- If fulfilled the ADT should not suffer from severe accident developments
- Criterion does not exclude core melting

SAFETY INDICATOR:

\[SI = \frac{\text{core-void} + \Theta \ast \text{clad worth}}{\text{subcriticality} + \text{Doppler}} \]

\[SI \sim -3 \]
Safety Indicator for ADT Cores II

\[SI = \frac{\text{core-void} + \Theta \cdot \text{clad worth}}{\text{subcriticality} + \text{Doppler}} \]

<table>
<thead>
<tr>
<th>Fuel Matrix</th>
<th>CERCER: ZrO_2</th>
<th>CERCER: MgO</th>
<th>CERMET Mo-92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant Worth pcm</td>
<td>6235</td>
<td>4840</td>
<td>3548</td>
</tr>
<tr>
<td>Subcriticality margin pcm</td>
<td>-3000</td>
<td>-3000</td>
<td>-3000</td>
</tr>
<tr>
<td>Doppler-wet pcm</td>
<td>7</td>
<td>-3</td>
<td>-34</td>
</tr>
<tr>
<td>Void/subcriticality margin</td>
<td>-2.1</td>
<td>-1.6</td>
<td>-1.2</td>
</tr>
<tr>
<td>Beta-eff pcm</td>
<td>190</td>
<td>182</td>
<td>198</td>
</tr>
<tr>
<td>Neutron generat. time (10^{-7}) s</td>
<td>5.9</td>
<td>4.4</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Clad Worth?:

\(~3000\) pcm (most promising fuels & cores investigated within FUTURE)

QUESTION:

IS THIS SAFETY INDICATOR VALID FOR ADT SAFETY ANALYSES?
Severe ADT Transient

DEC ULOF with Dedicated Fuel

Example 1:
1200 MWth ADT
(SIMMER-III Code Simulation)

Example 2:
800 MWth FUTURE ADT (ZrO₂ Matrix)
(SIMMER-III Code Simulation)

\[\text{SI} \sim -4 \]

\[\text{SI} \sim -2 \]

CONCLUSIONS?
SAFETY INDICATOR ISSUES

PROBLEM OF VOID & CLAD WORTH

Position 1: **Restrictive Approach**
- Discard cores with void worth potentials (clad worth potentials) larger than subcriticality margin from further consideration.
- Accept restrictions given by this requirement on fuel, core-size, design, p/d ratio etc.

Position 2: **New (more tolerant) Criterion**
- A SI is formulated, which should comply with a pre-set criterion

PLEASE NOTE:
1. This is a proposal for discussion
2. Further extensive testing is needed
3. Optimization of design still necessary
Core Size Sensitivity Analysis

Investigate whether a reduction in core size would be beneficial from a void/safety point of view

- **Void ρ vs. Δ Radius**
- **Void ρ vs. Δ Volume**

- **Void Worth Still Higher than Subcriticality**
- **Marginal Gain**
- **Cost/Benefit Analysis Necessary (ADT in scenario)**
CONCLUSIONS

Remarks

- LBE cooled ADS -> very good safety behavior
- ADTs arise some safety concerns

REACTIVITY POTENTIALS LARGER THAN THE SUBCRITICALITY MARGIN

- Restriction to the fuels & designs where subcriticality would cope with reactivity potentials might

SEVERELY LIMIT DESIGN FLEXIBILITY

Safety Indicator (SI)

- Allows some relaxation on more traditional safety requirements
- Aims at excluding severe accidents with energetics

Open Issues

- Empirical proposal must be CHECKED & PROVEN
- Investigation of supporting measures
 (e.g.: in-pin orifices, axial absorber layers, shutdown systems, 3rd shut-down level (EFR) etc.)
- Reduction of Core Size

Remarks

- LBE cooled ADS -> very good safety behavior
- ADTs arise some safety concerns

REACTIVITY POTENTIALS LARGER THAN THE SUBCRITICALITY MARGIN

- Restriction to the fuels & designs where subcriticality would cope with reactivity potentials might

SEVERELY LIMIT DESIGN FLEXIBILITY

Safety Indicator (SI)

- Allows some relaxation on more traditional safety requirements
- Aims at excluding severe accidents with energetics

Open Issues

- Empirical proposal must be CHECKED & PROVEN
- Investigation of supporting measures
 (e.g.: in-pin orifices, axial absorber layers, shutdown systems, 3rd shut-down level (EFR) etc.)
- Reduction of Core Size
THANK YOU!

Especially to all *FUTURE* collaborators:
Peter Smith, Richard Stainsby, Roger Thetford
Janne Wallenius, Vitali Sobolev, Rudy Konings, Sylvie Pillon

and greetings to you all from
Werner Maschek!