Processing of Spent TRISO-Coated GEN IV Reactor Fuels

Barry B. Spencer, Catherine H. Mattus, Guillermo D. Del Cul, Rodney D. Hunt, and Emory D. Collins
Oak Ridge National Laboratory
P.O. Box 2008; Oak Ridge, TN 37831-6223
Tel: (865) 574-7143; E-mail: spencerbb@ornl.gov

Eighth Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation
November 9—11, 2004
Las Vegas, Nevada

Session II. Partitioning Technology
Tuesday November 9, 2004

The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.
Configuration of HTGR/AHTR Fuels
—General Description—

- Fuel begins with small kernels
- Coatings applied for fission product containment
- Coated particles are mixed with a carbon-based mastic
 - Formed as "rods" (compacts) or "pebbles"
- Compacts are loaded into machined graphite, prismatic fuel elements
- Large amount of carbon associated with a small amount of fuel
 - Unique challenges to processing
HTGR/AHTR Fuels

Composition and Material Balances

<table>
<thead>
<tr>
<th>Component</th>
<th>Complete Element</th>
<th>Compacts†</th>
<th>Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite</td>
<td>90.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filler C</td>
<td>12.14</td>
<td>12.14</td>
<td>0</td>
</tr>
<tr>
<td>Pyro C</td>
<td>6.89</td>
<td>6.89</td>
<td>6.89</td>
</tr>
<tr>
<td>Porous C</td>
<td>1.72</td>
<td>1.72</td>
<td>1.72</td>
</tr>
<tr>
<td>SiC</td>
<td>4.63</td>
<td>4.63</td>
<td>4.63</td>
</tr>
<tr>
<td>Fuel + FPs</td>
<td>5.68+1.25</td>
<td>5.68+1.25</td>
<td>5.68+1.25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122.31†</td>
<td>32.31</td>
<td>20.17</td>
</tr>
</tbody>
</table>

*Assume: 20% initial enrichment; after burn ~18% fission product by weight and 2.5% enriched in ^{235}U.

†Mass of C in the compacts alone is 20.75 kg.
Summary of Recent Evaluations of Processing GENIV Fuels

- Methods developed in the 1960s and 1970s
 - Generally the entire fuel element was processed
 - Crush-Burn-(Crush-Burn)-Leach
 - Seemed to have the fewest processing problems
 - Large quantities of CO₂ (atmospheric disposal now questionable)
 - Large off-gas processing equipment needed
 - Capture greatly increases mass and volume (e.g. CaCO₃) compared to the elemental C
 - Grind-Leach
 - Grinding to sufficiently small particle size was problematic
 - Thorough wetting and solid-liquid separations difficult
 - Troublesome soluble organic species produced in leaching step

- Fuel and process changes alleviates several difficulties
 - Fuel is UCO (UO₂—UC₂ mix) instead of all UC₂
 - Organics arise from metal carbide—nitric acid reactions
 - Mechanical head-end may be used to remove the compacts from the prismatic block
 - Graphite—nitric acid reactions also responsible for soluble organics
 - Decreased volume and mass of carbon per unit of fuel

- Two promising alternatives to crush-burn-leach identified
 - Grind-leach (modified/improved)
 - Carbochlorination
 - Both methods minimize combining C with other elements
 - Both support a robust carbon-based waste form

- Aqueous grind-leach selected for further study
Aqueous Treatment Process—Concept Selected for Further Study—

- Harvest fuel compacts
- Process to recover fuel
 - Crushing and grinding
 - Optional solid-solid separation
 - Leaching with nitric acid
 - Adaptation of commercial graphite purification process
 - May require steps to destroy carboxylic acids
 - Solution routed to standard aqueous process
 - Residual C processed into waste form
- Methods result in smallest volume of carbon waste
Focus of Initial Research —UCO Fuel Processing—

- Dissolution of UCO fuel
 - Some organic acids may form
 - Occurs with mono- or di-carbide fuels
 - Buffer C may contribute less
 - Evaluate extent of problem
- Evaluate separation of carbon
- Address soluble organics problems
 - Interference with solvent extraction
 - Foaming w/solution cross-contamination
 - Emulsions
 - Reduced distribution ratios
 - An ozonation, or similar, step could destroy the mellitic acid
Summary of Experiments

• Crushed TRISO fuel surrogates were primarily used due to unavailability of actual materials
 – Substitutes were made as follows

<table>
<thead>
<tr>
<th>Substitute</th>
<th>For:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon black</td>
<td>Buffer C</td>
</tr>
<tr>
<td>Activated Carbon</td>
<td>Pyrolytic C</td>
</tr>
<tr>
<td>Carbon black</td>
<td>Filler carbon</td>
</tr>
</tbody>
</table>

 – Substitutes not needed for UO$_2$/UC$_2$ or SiC

• A small quantity of TRISO-coated zirconia was available
 – Provided prototypical carbon layers for testing
 – UO$_2$ powder added to make system more realistic
Summary of Experiments —continued—

- Test ID and Materials tested
 - A: UO$_2$ (as a standard)
 - B: UO$_2$ (as a standard)
 - C: UO$_2$ with stand-in carbon components
 - D: UO$_2$ with stand-in carbon components
 - E: UO$_2$-15%UC$_2$ (e.g. UCO)
 - F: UO$_2$-15%UC$_2$ with stand-in carbon components
 - G: Stand-in carbon components alone
 - H: Graphite
 - I: Crushed TRISO-coated ZrO$_2$ with UO$_2$ powder
 - J: Crushed BISO-coateda ZrO$_2$ with UO$_2$ powder
 - K: UO$_2$-30%UC$_2$
 - L: UO$_2$-30%UC$_2$ with stand-in carbon components

a Same as the TRISO but without the SiC layer
Crushed TRISO-Coated Zirconia

- Initial particle size
 - Total: 850 µm dia
 - Kernel: 500 µm dia
 - Buffer C: 100 µm thickness
 - IPyC: 40 µm thickness
 - SiC: 35 µm thickness

- For scale, yellow wire is 1448 µm dia

- Crushing method—pounding with steel bar
 - No unbroken shells
 - Note many kernels not broken
Qualitative Results

- Filtration was difficult with the very finely divided carbon black used for surrogates
 - Industry has solved the problem
 - For the experiments, separated via centrifugation and decantation
 - carry-over is thus atypical of a filtration process

- Color of leachate
 - Generally the yellow of uranyl nitrate solution
 - With TRISO-coated zirconia, solution was greenish
 - Y is used to stabilize Zr, and could have altered the color (it is usually red-brown alone)

- The leachate did not foam upon shaking
 - Indicates low amounts of organic acids
Analysis for Mellitic Acid

- Fourier Transform Infra-Red (FTIR) analysis was tested with standards
 - Carboxylic acid O-H stretch appeared to work
 - Sensitivity was too low
 - Mellitic acid was added to NaNO₃ solutions in varying concentrations
 - Similar to solution from which U is quantitatively precipitated
 - Uncorrelated interferences appeared to exist

- Actual results with leachate solutions were inconclusive
 - Even at pH around 7.5, some U remains in solution
 - Higher pH values can precipitate the mellitic acid
 - Possibly other species are keeping some U in solution
Solvent Extraction Tests

- Inferred from the literature that organic acids, mellitic acid in particular, would affect distribution ratios.

- Leachate was equilibrated with UREX solvent in a 1:1 aq:org ratio:
 - No foaming noted during mixing
 - Phases readily separated upon standing
 - No emulsions were observed

- Distribution ratios were calculated from analysis of the aqueous phase before and after contact with the UREX solvent.
Solvent Extraction Tests—continued—

<table>
<thead>
<tr>
<th>Test</th>
<th>Experimental D</th>
<th>Calculated D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>A</td>
<td>5.30</td>
<td>8.42</td>
</tr>
<tr>
<td>B</td>
<td>6.10</td>
<td>9.61</td>
</tr>
<tr>
<td>C</td>
<td>28.95</td>
<td>43.74</td>
</tr>
<tr>
<td>D</td>
<td>16.82</td>
<td>25.62</td>
</tr>
<tr>
<td>E</td>
<td>10.89</td>
<td>16.75</td>
</tr>
<tr>
<td>F</td>
<td>8.50</td>
<td>13.19</td>
</tr>
<tr>
<td>G</td>
<td>33.07</td>
<td>49.89</td>
</tr>
</tbody>
</table>

Blanks indicate no uranium in test material or D not measured
Solvent Extraction Tests —continued—

• The measured distribution ratios are slightly larger than predicted by either SEPHIS or AMUSE codes.

• Experimental data on U concentration were estimated to be in error by as much as 10%:
 – High and low distribution ratios were calculated based on this band.
 – The lower experimental values are barely above predictions.

• Systematically high measured values can indicate:
 – Systematic error in methodology.
 – Problems with models at high nitric acidity (> 7 M).
 – Organic acids in the organic phase enhanced U extraction.

• But the control sample with only UO₂ also had high D.
Summary

- Traditional processing of HTGR fuel reviewed
- Waste reduction goals favor retaining elemental carbon
- Two flow sheets were identified for further development
 - Carbochlorination as a precursor to pyro-processing
 - Modernized crush-leach for aqueous based processing
 - Relies on industrial carbon-processing technology
 - Was selected for evaluation
- No problems with solution foaming was observed
- Ultra-milling is problematic in conventional filtering
 - Adaptation of filtering methods from the graphite & carbon black production industries is potential solution
 - Careful control of particle size provides more options
Summary —continued—

- **Solvent extraction**
 - No mechanical problems (e.g. foaming, emulsion or phase separation problems not observed)
 - Distribution ratios slightly larger than predicted by accepted models (e.g. AMUSE and SEPHIS)
 - Large Ds possibly (but not likely) due to an organic acid

- **Potential organic acid problem**
 - Needs to be further investigated (real or not)
 - Need to know if it accumulates in the organic phase and interferes with stripping of product
 - Could be addressed with an organic destruction step between leaching and solvent extraction (e.g. ozonation)