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Introduction
Accident sequences evolve over time through the interaction of dynamics and stochastics in the system of “Man, Machine, Process and Environment”. 
In the customary event tree analysis of Level 1 PSA and in the accident sequence analysis of Level 2 PSA, the analysts prescribe the stochastic events together with the order in which they occur. While temporal information may be available for few selected sequences in Level 1 and on an event scale in Level 2, time is usually not considered in the conventional event tree. These customary trees largely develop along a so-called effect line rather than a time line. Branching points of Level 1 event trees are prescribed by the order of safety system demands at set points. Usually, there are only two branches per point, namely one each for “system starts” and for “fails to start”. Due to limitations of the customary event tree methodology no consideration can be given, for instance, to the consequences of gradual failure to run for the intended time and/or with the required capacity. 

Branches in Level 2 accident sequence trees are frequently used to account for classes of possible consequence magnitudes from complex physico-chemical processes. Consequently, the number of branches often exceeds two. Presently, the spectrum of possible accident sequences in Level 2 PSA is reduced to the degrees of freedom of a rather coarse grid in time (i.e. “early”, “late” or  “before”, “after”), in space (i.e. “top”, “bottom”) and in magnitude (i.e. “small”, “medium”, “large”), etc. This does not permit to model the interactions of phenomena, processes, component behavior and human actions as close to reality as is desirable. Inherent to the coarse grid is the danger that:
· important sequences, resulting from details in time, space, magnitude and order of events, remain unknown,
· unrealistic sequences are generated, based on analyst specified conditions which  otherwise would result from preceding events.
The methods of probabilistic dynamics enable us to fully account for the interaction of dynamics and stochastics and for the temporal dependency in the evaluation of accident consequences in addition with their conditional probabilities (condition is the initiating event). Probabilistic dynamics operates on the actual time/state space and its computational effort is considerably larger compared to a conventional event tree analysis. For this reason its application is still restricted to specific aspects of a PSA. The vision is, however, to be able to perform a dynamic PSA. Such an analysis would account for the interactions between the time-dependent dynamics quantities and set points in the time/state space on one hand and the stochastics in environmental conditions and in the failure behavior of technical components and systems as well as in human actions on the other hand. 
The most straightforward numerical procedure for such an analysis would be a Monte Carlo simulation. Its transition probabilities may depend on the state of the dynamic quantities, systems and components and even on residence times as well as on details of the sequence history. It suffices to prescribe rules for the evaluation of the probabilities of transitions to those states that are directly accessible from the present state. One Monte Carlo element generates only one sequence out of the population of possible sequences and low probability transitions will be adequately represented only if the sample is of sufficiently large size. The generation of each sequence requires a complete dynamics calculation starting from the initiating event and ending in one of the “absorbing” states. The latter include specified damage states, the state of no damage and controlled operation and possibly the arrival at the endpoint of the specified observation time.
The literature reports on a variety of dynamic event tree methods /AND 98, ASE 97, COJ 96, SIU 94/. They generally permit a considerable reduction of the computer time for the numerous dynamics calculations through variance reduction and organization of the model runs such that duplications are avoided for sequence sections. To this end, continuous and discrete random transitions are treated probabilistically through repeated branching of the sequence at systematically chosen points in time according to user specified probability distributions. The dynamics calculations are only performed for the sequence sections starting at the branch points. Deterministic and discrete random transitions can be adequately treated by these methods, although transitions of many discrete states generate many branches, thereby blowing up the tree. This is especially the case, if continuous random variables are discretized. The method described in the next paragraph tries to handle continuous random transitions in a more appropriate way.
2 The stochastics module MCDET

A combination of Monte Carlo Simulation and Dynamic-Event-Tree analysis was developed and tested /HOF 01/. It is called MCDET (Monte Carlo Dynamic Event Tree) and permits an approximate treatment of discrete and continuous random transitions. An estimate of the approximation error is provided by the method. 

Deterministic transitions are taken into account as part of the general control module of the deterministic dynamics code. This module, for instance, contains the points in the time/state space where automatic reactions of the safety systems are initiated (set points). Discrete transitions generally are treated by event tree analysis.  Continuous random transitions or discrete random transitions, where the number of discretization points is high, are accounted for by Monte Carlo simulation. For each Monte Carlo simulation a separate Dynamic Event Tree is generated where full account of the interactions between stochastics and dynamics is achieved along the time line. 

MCDET can be identified as a special case from the class of so-called "variance reduction by conditioning" Monte Carlo simulation methods. Any scalar output quantity Y of a (dynamic) model h subject to aleatory un​certainties (stochastic events) can be represented as Y=h(V) with V being the set of all stochastic variables involved. V is then divided into two subsets Vd and Vs with Vd = subset of selected discrete variables treated by event tree analysis and Vs =V\Vd = subset of all remaining variables, i.e. all continuous and the remaining discrete variables. For instance, the variables in Vd may be regarded as representing the discrete system states into which the aleatory transitions may take place, the variables in Vs as representing the continuous aleatory times at which these transitions may occur. 
The MCDET procedure may roughly be considered as consisting of two main computational parts:

(a) generate a value vs of the variables from subset Vs by Monte Carlo simulation – this part will involve biasing techniques like sampling the failure to run time of a system from the conditional distribution where the condition is the run time failure within the required operation time of the system and the failure branch probability is the condition probability, 

(b) perform the computer model runs with the value vs for the variables from subset Vs and with all possible combina​tions of all discrete values of the variables from the subset Vd (considered as paths of an event tree). 

From this the respective discrete conditional distribution FY|Vs(y|Vs=vs) of the output Y given Vs=vs and its expectation E[Y|Vs=vs] can be computed analytically. Repeating these two steps n times inde​pendently, a sample of n conditional distributions/expectations is obtained from which many useful statements on the aleatory uncertainty in Y can be derived. In applications with computationally inten​sive models, a probabilistic "cut off" criterion must often be introduced to keep the computational ef​fort practicable. It ignores all paths (=combinations of values of variables from Vd) which have a conditional probability less than a user specified threshold value. Due to the well known relationships E(E[Y|Vs]) = EY and var(E[Y|Vs]) = var Y - E(var[Y|Vs]) it turns out that the estimate of any kind of expected values obtained from the MCDET procedure is more efficient, i.e. has smaller variance, than the corresponding estimate obtained from the crude Monte Carlo simulation with all aleatory variables, discrete as well as continuous, sampled with the same sample size n. Of course, the processing time of a single MCDET run with all its paths may be much longer than the processing time of a run of the dynamics model for a single sample element of the crude Monte Carlo simulation. 
To obtain continuous event trees one would need to analytically solve the equations of probabilistic dynamics (for their formulation in a rather simplified situation see /SMI 94/). With the combination of discrete dynamic event tree analysis and Monte Carlo simulation, as in MCDET, an approximate solution of these equations in their most general formulation is obtained. 

MCDET is implemented as a stochastics module that may be operated in tandem with any deterministic dynamics code, some basic input/output properties of the code assumed. For each element of the Monte Carlo sample, the tandem generates a discrete dynamic event tree and computes the time histories of all dynamics variables along each path together with the path probability. Each tree in the sample provides a conditional probability distribution (conditioned on the initiating event and on the values of the randomly sampled aleatory uncertainties) for each of the dynamics quantities. The mixture of these distributions in the sample is the result. From the random sample of discrete dynamic event trees, the probabilities of all dynamics and system states of interest may therefore be estimated. Together with these estimates confidence intervals are available that quantify the possible influence of the sampling error which is due to the limited sample size of the Monte Carlo simulation. 
Modeling the stochastics requires the formulation of random laws and the specification of their parameter values. Laws and parameter values but also model formulations, model parameter values, the relevance of phenomena that may or may not contribute to the accident propagation as well as input data of the dynamics code  are subject to epistemic (i.e. state of knowledge) uncertainty. The combined influence of these uncertainties on the solution estimates provided by MCDET needs to be quantified. This requirement also should be accomplished for any other PSA method.  To this end the state of knowledge to each of the epistemic uncertainties is quantitatively expressed by a subjective probability distribution. The immediate way to estimate the combined influence of the epistemic uncertainties would again be by Monte Carlo simulation. This would lead to two nested Monte Carlo loops (also known as “double randomization” or “two-stage sampling”) where the outer loop varies the epistemic quantities and the inner loop is the Monte Carlo simulation of MCDET which varies the aleatory (i.e. stochastic) quantities. Frequently, the dynamics model is very processor time intensive and thus the obvious way of two nested Monte Carlo loops is often not practicable. The methodology for an approximate epistemic uncertainty analysis was therefore suggested in /HOF 01, HOF 02/. It is based on decomposition of the total variance into two variance contributions, namely from the epistemic and from the aleatory uncertainties. It requires only one repetition of the Monte Carlo simulation in MCDET.
3 Illustrative application of MCDET with MELCOR
This paragraph describes an application of MCDET to a transient simulation with MELCOR which was chosen for demonstration purposes. First the transient is briefly discussed, followed by a short summary of main points of the plant representation in MELCOR and by a compilation of the stochastic events considered.
3.1    The transient

A total station black-out in a 1300 MWe pressurized water reactor of Konvoi type at nominal power (end of cycle) was chosen to illustrate the applicability of MCDET in tandem with the dynamics code MELCOR /NRC 97/. The transient is characterized by the total loss of power (including emergency diesels and other sources). Furthermore, the analysis assumes that external power is restored not earlier than 5700 s and not later than 12000 s after the initial event. Due to the loss of power, the main coolant pumps and all operational systems fail. For some period of time batteries guarantee DC power supply to all battery supported functions. Scram and turbine trip are performed automatically. Automatic pressure limitation via the pressurizer relief valve and the two safety valves is possible. After the corresponding signal indicates that a plant specific criterion is satisfied, primary side pressure relief (primary bleed as an accident management measure) is principally assumed. 
Once the pressure on the primary side has decreased far enough, the accumulators can inject their coolant inventory, provided the associated source and additional isolation valves open on demand. The high pressure and low pressure emergency coolant injection systems can be activated only once the power supply has been restored. After power restoration the four trains are reconnected to the grid one by one, each requiring some preparation time. In any case, some time is required after the bleed operation until coolant is injected into the primary side. Depending on how much time goes by, the core may experience gradual damage. The effects of this, particularly in connection with the finally occurring injection of coolant, depend on details of the timing of various events. The high core melt temperatures in combination with high system pressure (in the case of unsuccessful bleed operation) may lead to failure of main coolant piping in the hot leg or of the pressurizer surge line before the vessel integrity is lost.

Of particular interest are the time histories of dynamics quantities like pressure in the vessel as well as in the containment, core exit temperature and the degree of core degradation as expressed by the total melt mass and hydrogen mass generated. Also of interest is the conditional probability of the event of primary side pressure relief with successful core cooling, etc..
3.2    Representation of the plant in MELCOR

MELCOR is a deterministic fully integrated, full plant severe accident simulation code for nuclear power plants. It was developed for applications in integrated severe accident analyses and probabilistic safety assessments (PSA) by Sandia National Laboratories. A detailed description of all its models may be found in /NRC 97/. The MELCOR code is used to model a wide range of phenomena including, among others, thermal hydraulics, core heat-up and degradation, core concrete interaction, radio-nuclide release and transport and melt ejection phenomena. The version MELCOR 1.8.4 was used in tandem with MCDET for the illustrative application described here. With respect to the plant representation the following should be mentioned:

·  
The four main coolant loops are represented by two model loops. Each loop is divided into five volumina and contains a model of the main coolant pump. The loop connected to the pressurizer, is one of the two model loops. The remaining three loops are combined into one loop. The pressurizer, its surge line to the hot leg and its relief tank are represented separately by altogether five volumina. The volumina are connected by flow paths which describe, as far as possible, the actual flow conditions. Pressurizer heating, relief valve and safety valves as well as rupture discs are modeled separately in agreement with the situation in the reference plant.

·  
Of the existing coolant injection systems the accumulators (their controls are modeled in detail, i.e. including their shut-off at the cold leg 500 s after the relevant emergency coolant injection signal) are represented together with their additional isolation valves. Especially for investigations of the reflooding phase after a total SBO each of  the four high pressure and low pressure safety injection systems is modeled together with its isolation valve including the shut-off specifications of these three-way valves.
·  
The reactor core was modeled by five non-uniform radial rings and ten axial levels for the active core according to e.g. the axial and radial power profile.

For further details see /SON 01/. Different to /SON 01/ a simplified model of the containment was used since the main interest focused on the processes within the reactor circuit.
3.3    Stochastic events
Whether the pressurizer relief valve and/or any of the two safety valves will fail during the many demand cycles of the automatic pressure limitation is subject to aleatory uncertainty (stochastics). Their failure probability is assumed to increase with the number of demand cycles performed. Further aleatory uncertainties are the number of the failure cycle and whether the failure mode will be “fails to open” or “fails to close” (gradual failures can be considered in MCDET but was not done so in this illustrative application). 
Primary side pressure relief (primary bleed) is assumed to be initiated by the crew with some delay time, after the corresponding signal indicates that the relevant criteria are satisfied. The length of this delay time as well as the opening of valves that have not yet failed during the pressure limitation (i.e. the total valve diameter available for the bleed operation), are subject to aleatory uncertainty.

The accumulators can inject their coolant inventory, provided the associated source and additional isolation valves open on demand, which is an aleatory uncertainty for each of the valves.

The high pressure and low pressure emergency coolant injection systems can be activated only once the power supply has been restored. The time of this event as well as the start on demand of each of the four high pressure and low pressure pumps, once reconnected, are further aleatory uncertainties. The order of reconnection of the four emergency coolant trains will depend on which source isolation valve was found not to open for accumulator injection. This train will be reconnected last.
4 Results from the illustrative application 

A sample of 50 discrete dynamic event trees was generated by MCDET for the transient of paragraph 3. Section 4.1 presents the first paths or event sequences of a selected tree from the sample in the time/event plane and discusses some of the sequences for demonstration purposes. Section 4.2 shows 2 dynamic event trees for two dynamics quantities in the time/state plane. The respective conditional probability distributions are shown in section 4.3. An example of the actual results obtained, namely the mixture distribution over all discrete dynamic event trees in the Monte Carlo sample, is presented in section 4.4.
4.1     Selected trees in the time/event plane

Fig. 1 show the first 57 (out of about 250) paths (or accident sequences) of the discrete dynamic event tree no. 2  of the Monte Carlo sample of 50 tress in the time/event plane. The usual vertical lines at the branching points are omitted for clarity of presentation. Instead, each branch is given an identifier consisting of the path number before the slash and the number of its origin (path where it branches off) after the slash. At the end of each path the path number is repeated together with the conditional path probability (condition is the considered SBO). Table 3.10-1 of /HOF 01/ explains the meaning of the symbols.
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Fig 1:
   Path nos. 1 to 57 (of a total of 226) of the dynamic event tree no. 2 of the sample  
On the time line, at the bottom of each tree, the randomly chosen demand cycle for pressure limitation where a failure to open or failure to close occurs, is indicated for all three valves (noted AV, SV1 and SV2). Furthermore the times of reconnection of the four emergency coolant trains, which are derived from the randomly chosen time of power restoration plus preparation time, are shown on the time line (noted S1, S2, S3 and S4). 

Sequence no. 0 at the bottom of Fig. 1, is the success path. It is shown here from 4000 s onwards since none of the stochastic events considered lead to a branching before this time. Along the success path no valve failure occurs during the demand cycles for pressure limitation. Pressure relief of the primary side (bleed) is performed after the delay time, which was randomly chosen for this tree. After bleed all valves are open as is indicated by the open square symbol between 6500 s and 7000 s. Once the pressure has decreased far enough, the accumulators inject coolant. As is indicated by the crossed square symbol, the source isolation valves and the additional isolation valves for hot leg accumulator injection open on demand. The four diamonds symbol following next on the success path indicate the times of the successful start of each of the four high pressure and low pressure injection pumps and the opening of the corresponding source isolation valves both in the hot and cold legs as demanded.

Paths 1 and 2 are a branch off path 0 at the demand cycle of the pressurizer relief valve that was randomly chosen for this tree as failure cycle. In path 1 the relief valve fails to close (open triangle symbol) and in path 2 it fails to open (closed triangle symbol). Along paths 1 and 2 everything else is functioning as intended. Possible failure events lead to a branching point on these paths. For instance, in path 3, which branches off path 2, the first safety valve fails to close in addition to the stuck closed pressurizer relief valve. The first diamond symbol on path 2 indicates the bleed action. In the case of path 2  we have a  reduced total diameter, because only the two safety valves open while the relief valve stuck close. The demand cycles for the safety valves differ between paths 0 and 2 due to the failure of the relief valve to open. Consequently, the failure probabilities of these valves change. For path 3, the failure cycle of the first safety valve was randomly chosen according to these adjusted probabilities.

In paths 0 to 3 accumulator injection occurs before and in paths 4 to 6 after the reconnection of the emergency coolant trains. This difference in the sequence of events is an immediate consequence of the interaction of stochastics and dynamics.
4.2
Selected trees in the time/state plane  

Figs. 2 and 4 show the time/state plane for the dynamics quantities (or state variables) “Total generated mass of UO2 melt” and “Total generated mass of H2” for the discrete dynamic event tree no. 2 of the sample. The corresponding information for tree no. 7 is shown in Figs. 3 and 5.  The difference between trees no. 2 and 7 is due to the randomly chosen: 

· time when power supply was recovered 

· demand cycles with valve failure (pressurizer relief valve and safety valves) during 

· pressure limitation

· time between signal and actuation of depressurization of the primary side by the crew

These differences result in significantly different trees in the time/state plane as can be seen from a comparison of Figs. 2 and 3 as well as 4 and 5. Each tree alone shows a broad spectrum of possible accident sequences with associated consequences. The complete sample of the 50 generated dynamic event trees exhibits an even wider spectrum. Some paths end in successful core cooling while in others core degradation is in progress with significantly different consequences. To each of these paths the conditional probability is computed. 

It should be noted that the conventional PSA computes the consequences of only a small number of paths (two or so) that are selected with the intention to envelop the spectrum of consequences. For instance, for the transient scenario considered here, in the conventional procedure only two paths were selected by the analyst - one with and one without depressurization of the primary side. Clearly, there is no way to obtain the required probability distribution of, for instance the total generated H2 mass, from this sparse information. 
Using the methodology of MCDET, it is possible to provide this distribution for each dynamics quantity of interest and at each point in time. Consequently, much more confidence of probabilistic statements is given compared with the conventional analysis.  
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Fig. 2:
   Dynamic event tree no. 2 of the sample presented in the time/state plane for the 

               state variable “Total generated UO2 melt mass”
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Fig. 3:
   Dynamic event tree no. 7 of the sample presented in the time/state plane for the 

              state variable “Total generated UO2 melt mass”
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Fig. 4:
    Dynamic event tree no. 2 of the sample presented in the time/state plane for the

                state variable “Total generated H2 mass”
[image: image5.wmf] alle Pfade aus Lauf 7

MCDET/MELCOR

Zeit [s]

12000.0

10000.0

8000.0

6000.0

4000.0

600

500

400

300

200

100

0


Fig. 5:
   Dynamic event tree no. 7 of the sample presented in the time/state plane for the 

               state variable “Total generated H2 mass”
4.3
Probability distributions for dynamics quantities  
The PSA requires the conditional probability distribution of, for instance, the total generated H2 mass at specific points in time. Fig. 6 shows this distribution as obtained from the discrete dynamic event tree no. 2 of the Monte Carlo sample.

The actual result of the probabilistic dynamics analysis with MCDET and MELCOR is, however, the mixture of corresponding distributions from all 50 discrete dynamic event trees in the sample. This mixture distribution is shown in Fig. 7.
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Fig. 6:
   Conditional probability distribution of the state variable “Total H2 mass” generated 
               up to 12000 s” from the dynamic event tree no. 2 of the sample
4.4    Final result of the probabilistic dynamics analysis

Fig. 7 shows the conditional probability distribution (condition is the considered SBO) of the total generated H2 mass at 12000 s. From this distribution one reads, for instance, that at 12000 s the H2 mass does not exceed 320 kg with conditional probability 0.82 while it exceeds 200 kg with conditional probability 0.43. The corresponding information is available for all other dynamics quantities. 

The probability read from the mixture distribution for a given H2 mass is the arithmetic average of the cumulative probabilities at the same mass value from all trees in the Monte Carlo sample. Therefore confidence intervals and limits can be obtained for the cumulative probabilities in Fig. 7. They quantify the possible effect of the sampling error which is due to the limited sample size of the Monte Carlo simulation. Apart from the probability threshold for tree construction, this is the only error in the approximate solution of the probabilistic dynamics equations by the combination of dynamic event tree analysis and Monte Carlo simulation. The cumulative probability in Fig. 7 does not add up to 1.0 because of the user selected probability threshold. Paths with conditional probability below this threshold in any tree of the sample are not generated. 
Fig. 7 shows the probability distribution together with the band of local (at selected mass values) computed 90% confidence intervals. Of course, this band only quantifies the influence of the sampling error. 
The combined influence of the epistemic uncertainties on the cumulative probabilities would need to be obtained from an epistemic uncertainty analysis of this illustrative probabilistic dynamics analysis with MCDET and MELCOR. An approximate approach to perform such an analysis is presented in /HOF 01, HOF 02/.
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Fig. 7:     Band of local 90% confidence intervals for the cumulative probabilities of the state 

                variable “total H2 mass generated up to 12000 s”. The intermediate curve is the 

                conditional probability distribution from all dynamic event trees in the sample of 

                size 50.

5    Conclusions and Outlook

The method MCDET permits to adequately account for all interactions between stochastics and dynamics in the application of deterministic dynamics models for PSA Level 1 and 2. It overcomes the drawbacks of the conventional methods to restrict the analysis to few so-called enveloping sequences or scenarios selected by the analysts. With MCDET the event trees receive a time axis and thus become what they are in reality, namely dynamic event trees.
MCDET provides approximate solutions to the equations of probabilistic dynamics. The approximation error may be quantified by confidence intervals for cumulative probabilities of any dynamics quantity and at any point in time of interest. An approximate epistemic uncertainty analysis for the desired cumulative probabilities can be performed. MCDET is able to treat discrete as well as continuous random transitions in a comparably consistent manner. This is achieved through the combination of dynamic event tree analysis with Monte Carlo simulation. The tree construction as well as the Monte Carlo simulation can fully exploit the computational capacity of a system of parallel computer nodes. 

The results of the illustrative application demonstrate for the first time the consequences of the full interaction between stochastics and dynamics as modeled in MCDET and MELCOR. Already the stochastic variability of the discrete variables, accounted for by the tree structure, lead to a considerable spectrum of consequences and associated probabilities. The stochastics additionally accounted for by Monte Carlo simulation lead to an even wider spectrum of paths with corresponding consequences and probabilities, as can be seen from the comparison of two trees from the sample. It is to be remembered that the conventional PSA only performs only a few dynamics calculations so that they follow only a few paths from the given spectrum of accident sequences.  The conditional probability distribution in Fig. 7 is the kind of result a PSA needs for its assessments. This distribution is only available from a probabilistic dynamics analysis as performed here. It summarizes the variability of consequences from the dynamic event trees for further processing in the PSA.

At this point it should be mentioned that this illustrative probabilistic dynamics analysis already produced many interesting insights into the possible spectrum of accident sequences following an SBO. Among these are also some unexpected results which require detailed investigation by the experts in order to decide whether they are due to the particular model representation of the plant or whether they are founded in the physics of the accident. 
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