Rolls-Royce

2018 Nuclear Supply Chain Management Workshop
Emerging Challenges with Globalisation of a Nuclear Supply Chain

Chris Tierney

5th November 2018

Pioneering the power that matters
Agenda

01 Introductions

02 Global Supply Chain Challenges

03 Global Supply Chain Enablers

04 Planning for the Future

05 Questions and Answers
Introductions
Rolls-Royce Civil Nuclear Executive Vice President
Chris Tierney

- 30 years’ experience within a number of highly-regulated Engineering and Manufacturing organisations.
- Joined Rolls-Royce in 2009 and is currently Executive Vice-President for the Civil Nuclear UK business.
- Primarily focus - UK New Build & Operational Services Market.
- Functional role - Head of Procurement and Supply Management
- Based in the UK (Derby location).
Introduction - Session

Share Rolls-Royce experience of operating across a diverse and technically demanding range of industries with over 300 certified nuclear suppliers in a supply chain that Rolls-Royce has been active in for more than 50 years.

Consider the challenges facing global suppliers when providing nuclear equipment to countries developing their nuclear supply chain, local manufacturing resources.

Discuss emerging challenges with new manufacturing technology including Small Modular Reactors (SMR).
Our Vision

Pioneering the power that matters

We pioneer cutting-edge technologies that deliver the cleanest, safest and most competitive solutions to meet our planet’s vital power needs.
Who we are

We are one of the world’s leading industrial technology companies, creating power and propulsion systems for use on land, at sea and in the air.
Our people, our power

Driving our business forwards is a highly skilled workforce concentrated in key hubs around the world.

Across this global organisation, we are determined to pursue greater diversity and inclusion in all its forms.

We are committed to creating an environment where everyone can be at their best.

50,000 Employees
18,245 Engineers
750 Apprentices
50 Countries
How we are structured

Rolls-Royce is tightly focused into three operating businesses.

- Civil Aerospace
- Defence
- Power Systems
At a glance

Civil Aerospace
- 35 types of commercial aircraft powered by Rolls-Royce engines
- 13,000 engines in service around the world
- 24,600 employees

Defence
- Over 150 Customers in over 100 countries
- 16,000 engines in service around the world
- 9,800 employees

Power Systems
- >1,200 Development, service production, and dealership locations
- >20,000 Reciprocating engines sold per year
- 11,400 employees
Our future

As pioneers, we must continuously innovate to provide the best solutions in the markets we serve.

In the coming years, we believe that the three key trends will define the world’s future power needs.

Electrification
Fusion of mechanical and electrical technologies

Digitilisation
Fusion of physical and digital technologies

Growing demand for cleaner, safer and more competitive power
Increasing demand for travel, trade and sustainable energy
Roll-Royce Nuclear Heritage

- Rolls-Royce has been involved in the nuclear industry for over 50 years.

- Our experience is directly applicable to all phases of the new build programme that are planned in the UK and globally, and also to the operation and upgrade of existing sites.

- Our capability (Defence and Civil) is unique in the UK and matched only by a handful of companies worldwide.

- The expansion of the civil nuclear market represents an exciting opportunity which builds on our extensive nuclear capabilities.
Our Nuclear Capability

Submarines
- Reactor design/supply
- Licensed site operation
- Fuel fabrication
- Through-life services

Systems
- Reactor protection
- Rod control
- Neutron instrumentation
- Plant monitoring
- In-core instrumentation
- Heat exchangers
- Back-up power
- Waste treatment
- Plant process computers

Services
- Engineering
- Licensing
- Security
- Remote inspections, NDT
- Supply chain management

Data
- Asset life extension
- Optimised maintenance
- Inventory efficiency
- Risk reduction
- Operating cost reduction

Electricity
- UK SMR Power Station
Nuclear
Global Foot Print
Global Supply Chain Challenges
Challenges for New Entrants to Nuclear Supply Chain -

- Highly regulated
- Different codes and requirements (ASME & RCC-M) to meet
- Uncertain market demand – investment vs returns
- Low volume, high value, high risk components & services
- Limited number of existing Supply Chain companies with relevant experience (e.g., UK New Build)
 - Supply Chain incumbents are very well established
 - High cost to entry
New Supply chain entrants - Cost to Entry -

- Requirements – understanding gaps and costs
- Staff experience – limited resource pool, up-skilling
- Developing a nuclear safety culture – time and cost
- Quality systems – gaps and routes to certification
- Facility and infrastructure – cleanliness, segregation
- Systems – planning, management, document / records
- Controls – materials, manufacture, quality, export & security
- Management of supply chain sub-tiers
Supply Chain Risks to be managed -

- In-country regulations, language and cultural differences
- Interpretation of requirements and consequences of product failure
- Experience – eg: cost estimating, planning
- Security – intellectual property, facilities, system access
- Export control – awareness, restrictions and controls
- Counterfeit, Fraudulent and Suspect Items management
Global Supply Chain Enablers
Global Supply Chain Enablers

How to map Market Opportunities

▪ Civil vs Defence opportunities
▪ New build, plant maintenance, plant life extension and de-commissioning (full lifecycle)
▪ Take time to be clear where to focus -
 ▪ Safety vs non-safety components and services?
 ▪ NI, BNI, BOP, Services & Support?
 ▪ Which tier of Supply Chain?
 ▪ In-country / international?
Global Supply Chain Enablers – How to mitigate risks -

- Coordinated approach – governments, regulators, industry
- Industry Focus Groups – sharing and influencing
- Sharing of experiences
 - Working groups, systems, internet, bulletins
 - Support from industry experts
- Common codes and standards - guidance to certification
- Applying a graded approach to quality and oversight
- Supply Chain Development programmes
- Partnership arrangements
Planning for the Future
New Technology - Benefits

Manufacturing - 3D printing, welding, NDT, modular build.

Digital - data and knowledge

- Opportunity to improve design through innovation
- Improve and sustain quality, reduce non-conformance
- Reduce manufacture and assembly time
- Reduce risk (lead-time, cost, product quality)
- Reducing cost of build and ownership
- Extending plant / component life
- Obsolescence management risk reduction
Digital Future

DATA
195 global units
World-class analytics
Domain knowledge
Availability efficiency reliability

SERVICE

Asset life extension
Inventory risk mitigation
Improved plant performance
Maintenance process risk mitigation
Lower operating cost
Data analytics

Digital Excellence Centre

Customer value

WNE data science and intelligence overview
Not export controlled | © 2018 Rolls-Royce
Small Modular Reactors

- Built in factory on flow line
- Higher volume / rate – reduces costs and risk
- Package the plant into standardised transportable modules
- Tested and commissioned at the factory
- Shipped to site and assembled with relatively low skill requirements.
Enablers for the Future

- Work closely with Universities and Technology Centres
- New manufacturing techniques
- Move to digital - Data, documents, records and storage
- Standardisation & agility - codes, standards and systems
- Qualification – plans and enablers
- Shared approaches to material / obsolescence management
- CFSI awareness and sharing
- Protection - Intellectual Property, Export, Security
- Early supply chain engagement
Questions?