Risk Based Approach to Regulating Fuel Facilities in Canada

Workshop on Fuel Cycle Safety
Wilmington, North Carolina
October 16 - 18, 2007

Henry Rabski
Director
Processing and Research Facilities Division
MANDATE UNDER THE NSCA

The *Nuclear Safety and Control Act* obliges the CNSC to:

- Regulate the development, production and use of nuclear energy in Canada;
- Regulate the production, possession, use and transport of nuclear substances, prescribed equipment and prescribed information;
- Implement measures to respect Canada’s international commitments on the peaceful use of nuclear energy; and
- Disseminate scientific, technical and regulatory information concerning the activities of the CNSC.

To Protect Health, Safety, Security and the Environment
NUCLEAR FACILITIES IN CANADA
REFINING IN CANADA

In Blind River, yellowcake is processed to uranium trioxide (UO$_3$).

It then continues on to Port Hope, where the conversion facility produces uranium dioxide (UO$_2$) for use in CANDU reactors and uranium hexafluoride (UF$_6$) for use in light water reactors.

These products continue on to fuel fabrication facilities in Canada, the United States or Europe, for example.
FUEL FABRICATION IN CANADA

Zircatec Precision Industries – Port Hope, Ontario

GE Hitachi Nuclear Energy Canada Inc. - Toronto (Pellet Production) & Peterborough, Ontario (Bundle Assembly)
The CNSC is a federal agency, and is subject to the Canadian Environmental Assessment Act.

For each stage:
- Application
- CNSC Assessment
 - Environmental Assessment
 - Licensing Assessment
- Licensing
- Compliance
- Financial Assurance

CNSC LICENSING PROCESS
LIFE CYCLE LICENSING

1. Site Preparation
2. Construction
3. Operation
4. Decommissioning
5. Abandonment
REGULATORY COMPLIANCE

- *Nuclear Safety and Control Act*
- Regulations
- Facility licence
- Guides and standards
RISK BASED APPROACH TO REGULATION

Status 88 Facilities to Regulate

Challenges
• Diversity of facilities
• Location / accessibility
• Limited resources
• Consistency

Solution
• Develop an approach to minimize regulatory risk
RISK MATRIX

<table>
<thead>
<tr>
<th>Impact</th>
<th>Considerable impact</th>
<th>Management effort</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant impact</td>
<td>Considerable management of risk is required</td>
<td>Must manage and monitor risk with occasional control</td>
<td>Extensive management is essential. Constant monitoring and control</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate impact</td>
<td>Accept risks with occasional monitoring</td>
<td>Management effort is worthwhile but not essential</td>
<td>Management effort and control is required</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor impact</td>
<td>Acceptable risks Random monitoring</td>
<td>Accept risks with monitoring (no management)</td>
<td>Manage and monitor risks</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Probability
- Unlikely to occur (L)
- Might occur (M)
- Expected to occur (H)
TECHNICAL RISK AREAS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Operating Organization</td>
</tr>
<tr>
<td>2.</td>
<td>Facility Design and Condition</td>
</tr>
<tr>
<td>3.</td>
<td>Emergency Preparedness</td>
</tr>
<tr>
<td>4.</td>
<td>On-site Personnel Protection</td>
</tr>
<tr>
<td>5.</td>
<td>Environmental Protection</td>
</tr>
</tbody>
</table>
RISK TOLERANCE

Risk is characterized by:

Probability X Consequence X Tolerance
CONSIDERATIONS IN DETERMINING TOLERANCE

- Magnitude of the hazard
- Safety significance
- Geographic considerations
- Consequence of failure
- Probability of failure
- Knowledge / familiarity of the risk
- Impact on the environment
- Importance to the key risk areas
- Public and staff perception of risk
CONSIDERATIONS IN DETERMINING TOLERANCE (cont’d)

- Level of complexity
- Licensee ability to meet regulatory requirements
- Performance and safety history
- Defence-in-depth
- Uncertainty
- Precautionary principle
- Impact on resources
- Impact on achievement of objectives
- Impact on commitments
- Impact on values and ethics
RISK RANKING – EXAMPLE

- **Uranium Conversion Facility**

 Overall Ranking H2

 Six inspections Type II (minimum)

 Audits – radiation protection, environment and quality assurance

- **Fuel Fabrication Facility**

 Overall Ranking M2

 Four inspections Type II

 Audits – quality assurance
CONCLUSION

• Risk ranking assists in distribution of resources

• Useful when facilities are diverse

• Excellent tool for establishing baseline compliance program

• Approach needs periodic validation
CANADIAN NUCLEAR SAFETY COMMISSION

More information at website:
http://www.nuclearsafety.gc.ca
RISK LEVELS / RANKING

Using expert judgment:

• A risk level of Low, Moderate or High was assigned for each facility (or group of similar facilities) for each risk area using the pre-determined risk factors

• Comparisons were made among all the facilities within the same risk level (and in a risk area) to rank them from 3 to 1 level

Using knowledge of past performance:

• A performance rate was assigned to each facility for each risk area using the pre-determined performance indicators