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d Epistemic Uncertainties in Severe Accidents and Level 2
Probabilistic Safety Analysis
¢ Modeling uncertainty
¢ Parameter uncertainty

1 Parameter uncertainty addressed by sensitivity analysis and
appropriate choice of parameters

¢ Requires reliable model(s) for sensitivity analysis
1 Modeling uncertainty reduced by improvement in model(s) of

phenomena
¢ Requires enhanced knowledge of severe accident phenomena

¢ Requires enhanced base of experimental data
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Severe Accident - Phenomenological Uncertainties
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(1 The OECD-MCCI program is an internationally sponsored project investigating
ex-vessel debris coolability and 2-D core-concrete interaction

4 year project: 01/02 - 01/06.
U.S. is host country; program includes 12 international participants

(1  The program is conducting reactor material experiments and associated
analysis to achieve the following technical objectives:

resolve ex-vessel debris coolability issue through a program that focuses on
providing both confirmatory evidence and test data for cooling mechanisms
identified in MACE integral effects tests, and

address phenomenological uncertainties related to ex-vessel debris coolability, as
well as long-term 2-D core-concrete interactions under both wet and dry cavity

conditions

1 Achievement of these objectives will provide the technical basis for improved
SAMGs for existing plants, as well as better containment designs for advanced

plants
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1  Debris Coolability: Separate effects tests to investigate various coolability
mechanisms, thereby providing data for development and validation of models
and codes for extrapolation to plant scale

Severe accident codes (e.g., MELCOR) generally have parametric treatment of
debris coolability models

Experiment results used for model development or improvement, and code
assessment

[  2-D Core-Concrete Interaction: Prototypic material integral tests to provide 2-D
CCI data for code verification and validation purposes

Reduce modeling uncertainties in lateral/axial power split; resolve differences
between codes in calculated cavity erosion behavior

(1 In general, test types and parameter ranges selected to validate models over the
range of anticipated conditions in plant accident scenarios so that the codes
can be used to extrapolate to plant conditions

(d Severe accident uncertainties addressed through enhancement of knowledge
base and improvement of models in codes

S. Basu - CSNI Uncertainties Workshop, Aix-en-Provence, France - November 78, 2005



Bulk Cooling: Gas sparging initially high

enough to preclude stable crust formation.
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Corium melt generated through
thermite reaction

Melt is flooded at the top of
apparatus by four injection tubes
that impact upon a baffle plate

Multi-junction Type C thermocouple
assembly used forin-situ
measurement of water penetration
rate

Type C TCs at melt bottom surface

used to detect arrival of saturation
isotherm
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Parmameter SSWICS-1 | SSWICS-2 | S5WICS-3 | SSWICS4 | SSWICS-5 | SSWICS6 | SSWICS-7
Test Section ID (cm) 305 305 305 30.5 30.5 305 305
Melt Composition (wt % | 61/25/6/8 61/25/6/8 61/25/6/8 | 48/20/9/23 | 56/23/7/14 | 56/23/7T114 64/26/6/4
UO,/Zr0,/CriConcrete)
Concrete Type LCS SIL LCS LCS LCS SIL LCS
Meit Mass (kg) 75 75 75 60 68 68 80
Meit Depth (cm) 15 15 15 15 15 15 15
Initial Melt Temperature ~2300 ~2100 ~2100 ~2100 ~2100 ~2000 ~2100
(<)
Basemat Type Inert Inert Inert Inert Inert Inert Inert
System Pressure (bar) 1 1 4 4 4 1 4
Water Injection 4 4 12 13 6 14 13
Flowrate (Ipm)
Water Injected (liters) 33 39 34 40 61 47 40
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SSWICS Tests - Summary Results

Heat Flux Measured in SSWICS Tests
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Quench rate decreases with increasing concrete content in the melt
Quench rate does not increase appreciably with system pressure

Cluench rate is a weak function of concrete fype
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Dryout Heat Flux from Quench and Permeability

Heat Flux, Arbitrary Units

Quench-based Heat Flux Data
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SSWICS Posttest Debris Configuration (SSWICS-3)
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A 400 kg core melt is formed in-situ

by a thermite-type chemical reaction

The melt is then resistance heated
through two banks of tungsten
electrodes to simulate decay heat

CCIl proceeds to 30 cm ablation depth

in either radial or axial directions
Objective is to guantify radial-axial
power split

Melt is then flooded to provide
coolability data following late-phase
flooding

Crust formed at the melt/fwater interface
is then failed with a lance to cbtain data
on the crust breach cooling mechanism
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Parameter

Specification

Corium

100 % oxidized PWR with 8 wt % concrete

Concrete type

CCI-1: Siliceous

CCIl-2: Limestone/common sand

CCI-3: LCS variety with gas content between CCI-1
and CCI-2

Initial basemat dimension

50 cm x50 cm

Initial melt mass (depth)

400 kg (25 cm)

Test section sidewall
construction

Nonelectrode walls: concrete
Electrode walls: MgO protected by UOQ, pellet layer

Radial ablation limit

35 cm

Axial ablation limit

35 cm

Initial melt temperature

1800 °C

Melt heating technique

Thermite burn followed by direct electrical (Joule)
heating

Power supply operation-dry
cavity phase

CCI-1: Constant power at 150 kW
CCI-2: Constant power at 120 kW
CCI-3: Constant power at 120 kW
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CCIl Melt Temperature Data
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CCIl Concrete Ablation Data
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Posttest Debris Configuration (CCl-2 Test)

Corium and Concrete Walls
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Principal Findings of the OECD-MCCI Program

SSWICS test series
1. Water is able to ingress into cracks/fissures that form during quench,
thereby augmenting the debris cooling rate
2. Water ingression is more effective at the early phase when the concrete
content in the melt is low
3. Crusts are mechanically weak, indicating that the crust will likely breach
at plant scale providing pathways for significant water ingression

MET and CCI test series
1. Tests exhibiting melt eruption showed high melt entrainment rates
indicating effective augmentation of cooling
2. Radial erosion is an important factor in the overall cavity erosion process

Ramifications for accident management
1. Early containment flooding is effective in cooling core debris during early
phase of core-concrete interaction
2. Late phase flooding is effective in cooling core material in certain
geometries and for certain concrete types
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Significance of Data to Uncertainties Evaluation

SSWICS Database Utilization for Model Development

Heat Flux Data Compared With
Conduction-Limited Cooling Solution
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Significance of Data to Uncertainties Evaluation

SSWICS Database Utilization for Model Development

Crust Dryout Heat Flux Modeling
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Significance of Data to Uncertainties Evaluation

CCl Database Ulilization for Model Development

Corium/MWater Heat Flux, Arbitrary Units
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Significance of Data to Uncertainties Evaluation

CCI Database Utilization for Uncertainties Evaluation
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Significance of Data to Uncertainties Evaluation

CCI Database Utilization for Uncertainties Evaluation
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d MCCI program provided data that can be used to develop
coolability models and reduce uncertainties in assessing ex-vessel
coolability

1 SSWICS tests provided dryout heat flux data that can be used for
water ingression model and assess a more precise heat flux
partitioning at the melt-water interface

1 Entrainment data obtained from MET and CCI experiments can be
used to develop models for evaluating the effect of melt eruption
on ex-vessel coolability

1 CCl tests addressed uncertainties related to long-term two-
dimensional core-concrete interaction under dry and flooded cavity
conditions

1 In general, MCCI program demonstrated the relative effectiveness

of various cooling mechanisms in acheiving ex-vessel coolability,
and reduced uncertainties in the knowledge base
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