NUCLEAR ENERGY AGENCY
COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS

BEMUSE Phase IV Report:
Simulation of a LB-LOCA in ZION Nuclear Power Plant

Main Report

November 2008

The enclosed CD-Rom contains full report (including appendices).
The complete version is only available in pdf format.
BEMUSE PROGRAMME

Best–Estimate Methods
Uncertainty and Sensitivity Evaluation

BEMUSE Phase IV Report:
Simulation of a LB–LOCA in ZION Nuclear Power Plant.

Coordinators: F. Reventós (UPC), M. Pérez (UPC), L. Batet (UPC), R. Pericas (UPC)

Participating Organizations and Authors

AEKI, Hungary
CEA, France
FSUE EDO GUIDROPRESS, Russia
GRS, Germany
IRSN, France
JNES, Japan
KAERI, South Korea
KINS, South Korea
NRI–1, Czech Republic
PSI, Switzerland
UNIPI–1, Italy
UNIPI–2, Italy
UPC, Spain

I. Trosztel, I. Tóth
P. Bazin, A. de Crécy, P. Germain
S. Borisov
H. Glaeser, T. Skorek
J. Joucla, P. Probst
A. Ui
B. D. Chung
D.Y. Oh
M. Kyncl, R. Pernica
A. Manera
F. D'Auria, A. Petruzzi
F. D'Auria, A. Del Nevo
M. Pérez, F. Reventós, L. Batet
Abbreviations

0-D Zero Dimension or point
1-D One Dimension
2-D Two Dimension
3-D Three Dimension
AEKI Hungarian Academy of Sciences KFKI Atomic Energy Research Institute
BAF Bottom of Active Fuel
BE Best Estimate
BEMUSE Best Estimate Methods Uncertainty and Sensitivity Evaluation
CCFL Counter Current Flow Limitation
CEA Commissariat à l’Energie Atomique (France)
CL Cold Leg
CSNI Committee on the Safety of Nuclear Installations
DBA Design Basis Accident
DNB Departure from Nucleate Boiling
ECC Emergency Core Coolant
ECCS Emergency Core Coolant System
GAMA Group on Accident Management and Analysis
GRS Gesselschaft für Anlagen und Reaktorsicherheit mbH (Germany)
HL Hot Leg
HPIS High Pressure Injection System
IET Integral Effect Test
IRSN Institut de Radioprotection et de Sûreté Nucléaire (France)
ISP International Standard Problem
JNES Japan Nuclear Energy Safety (Japan)
KAERI Korea Atomic Energy Research Institute (South Korea)
KINS Korean Institute of Nuclear Safety (South Korea)
LB-LOCA Large Break Loss Of Coolant Accident
LOCA Loss Of Coolant Accident
LOFT Loss Of Fluid Test
LOFW Loss Of Feed Water
LP Lower Plenum
LPIS Low Pressure Injection System
LSTF Large-Scale Laboratory Facility
LWR Light Water Reactor
MATPRO Materials Properties correlations and computer subcodes
NPP Nuclear Power Plant
NRC U.S. Nuclear Regulatory Commission
NRI Nuclear Research Institute (Czech Republic)
PCT Peak Cladding Temperature
PSI Paul Scherrer Institute (Switzerland)
PWR Pressurized Water Reactor
RTA Relevant Thermalhydraulic Aspects
SB-LOCA Small Break Loss Of Coolant Accident
SET Separate Effect Test
SG Steam Generator
TAF Top of Active Fuel
T_{sat} Saturation Temperature
t_{que} Time of complete quenching
UNIPI University of Pisa (Italy)
UP Upper Plenum
UPC Universitat Politècnica de Catalunya (Spain)
List of Figures

2.1 Zion NPP, aerial view .. 7
3.1 Core heat structures .. 11
4.1 Normalized pressure curve along the loop 14
5.1 Time trends of intact loop 1 pressure in hot leg 21
5.2 Time trends of broken loop pressure in hot leg 21
5.3 Time trends of broken loop pressure in cold leg 22
5.4 Time trends of steam generator 1 secondary side pressure ... 22
5.5 Time trends of accumulator 1 pressure 23
5.6 Time trends of lower plenum liquid temperature 23
5.7 Time trends of lower plenum vapor temperature 24
5.8 Time trends upper head liquid temperature 24
5.9 Time trends of intact loop hot leg liquid temperature 25
5.10 Time trends of intact loop hot leg vapor temperature 25
5.11 Time trends of broken loop mass flow in cold leg 26
5.12 Time trends of broken loop mass flow in hot leg 26
5.13 Time trends of integral break mass flow 27
5.14 Time trends of ECCS integral mass flow 27
5.15 Time trends of primary system mass (including pressurizer) 28
5.16 Time trends of pressure drop in steam generator 1 (absolute value) 28
5.17 Time trends of reactor coolant pump 1 pressure drop (absolute value) 29
5.18 Time trends of cladding temperature of hot rod in hot fuel assembly (zone 5) — bottom level 29
5.19 Time trends of cladding temperature of hot rod in hot fuel assembly (zone 5) — 2/3 level 30
5.20 Time trends of cladding temperature of hot rod in hot fuel assembly (zone 5) — top level 30
5.21 Time trends of cladding temperature of average rod in average channel (zone 2) — bottom level 31
5.22 Time trends of cladding temperature of average rod in average channel (zone 2) — 2/3 level 31
5.23 Time trends of cladding temperature of average rod in average channel (zone 2) — top level 32
5.24 Time trends of maximum cladding temperature 32
5.25 Time trends of hot fuel centerline temperature at 1.6 - 1.8 m. — top level 33
6.1 Base case, Upper head pressure. ... 41
6.2 Base case, Primary circuit mass inventory. .. 41
6.3 Base case, Rod surface temperature. .. 42
6.4 Sensitivity No1, Fuel conductivity — Time trend comparison. Upper head pressure. . 43
6.5 Sensitivity No1, Fuel conductivity — Time trend comparison. Mass inventory. 44
6.6 Sensitivity No1, Fuel conductivity — Time trend comparison. Rod surface temperature. 45
6.7 Sensitivity No2, Gap conductivity — Time trend comparison. Upper head pressure. . 46
6.8 Sensitivity No2, Gap conductivity — Time trend comparison. Mass inventory. 47
6.9 Sensitivity No2, Gap conductivity — Time trend comparison. Rod surface temperature. 48
6.10 Sensitivity No3, Decay power — Time trend comparison. Upper head pressure. 49
6.11 Sensitivity No3, Decay power — Time trend comparison. Mass inventory. 50
6.12 Sensitivity No3, Decay power — Time trend comparison. Rod surface temperature. .. 51
6.13 Sensitivity No4, Initial power — Time trend comparison. Upper head pressure. 52
6.14 Sensitivity No4, Initial power — Time trend comparison. Mass inventory. 53
6.15 Sensitivity No4, Initial power — Time trend comparison. Rod surface temperature. .. 54
6.16 Sensitivity No5, Maximum linear power — Time trend comparison. Upper head pressure. 55
6.17 Sensitivity No5, Maximum linear power — Time trend comparison. Mass inventory. ... 56
6.18 Sensitivity No5, Maximum linear power — Time trend comparison. Rod surface temper- 57
ture. ..
6.19 Sensitivity No6, LPIS delay — Time trend comparison. Upper head pressure. 58
6.20 Sensitivity No6, LPIS delay — Time trend comparison. Mass inventory. 59
6.21 Sensitivity No6, LPIS delay — Time trend comparison. Rod surface temperature. 60
6.22 Sensitivity No7, Accumulator liquid volume — Time trend comparison. Upper head 61
pressure. ..
6.23 Sensitivity No7, Accumulator liquid volume — Time trend comparison. Mass inventory. 62
6.24 Sensitivity No7, Accumulator liquid volume — Time trend comparison. Rod surface 63
temperature. .. 64
6.25 Sensitivity No8, Accumulator pressure — Time trend comparison. Upper head pressure. .
6.26 Sensitivity No8, Accumulator pressure — Time trend comparison. Mass inventory. ..
6.27 Sensitivity No8, Accumulator pressure — Time trend comparison. Rod surface temper-
68
ture. ... 69
6.28 Sensitivity No9, Containment pressure — Time trend comparison. Upper head pressure. .
6.29 Sensitivity No9, Containment pressure — Time trend comparison. Mass inventory. ..
6.30 Sensitivity No9, Containment pressure — Time trend comparison. Rod surface temper-
69
ture. ...
6.31 Sensitivity No10, Pellet radius — Time trend comparison. Upper head pressure.
6.32 Sensitivity No10, Pellet radius — Time trend comparison. Mass inventory. 70
6.33 Sensitivity No10, Pellet radius — Time trend comparison. Rod surface temperature. 71
6.34 Sensitivity No1, Fuel conductivity — Scalar parameters. 72
6.35 Sensitivity No2, Gap conductivity — Scalar parameters. 73
6.36 Sensitivity No3, Decay power — Scalar parameters. 74
6.37 Sensitivity No4, Initial power — Scalar parameters. 75
6.38 Sensitivity No. 5, Maximum linear power — Scalar parameters. 77
6.39 Sensitivity No. 6, LPIS delay — Scalar parameters. 77
6.40 Sensitivity No. 7, Accumulator liquid volume — Scalar parameters. 78
6.41 Sensitivity No. 8, Accumulator pressure — Scalar parameters. 78
6.42 Sensitivity No. 9, Containment pressure — Scalar parameters. 79
6.43 Sensitivity No. 10, Pellet radius — Scalar parameters. 79
6.44 Sensitivity No. 10, Pellet radius — Scalar parameters. 80
6.45 Sensitivities mean ∆PCT values — Scalar parameters. 81
6.46 Sensitivities mean ∆tREFLOOD values.— Scalar parameters. 82

A.1 Zion NPP, aerial view 2
A.2 Nodalization sketch 5
A.3 Inconel-600 properties 12
A.4 Stainless Steel: AISI 304 properties 12
A.5 UO₂ properties 18
A.6 Gap properties 19
A.7 Zr-4 properties 19
A.8 Core configuration 25
A.9 Linear heat generation rate profiles 26
A.10 Westinghouse pump homologous single phase head curves 37
A.11 Westinghouse pump single phase homologous torque curves 37
A.12 Head difference data 38
A.13 Homologous torque difference curves 38
A.14 LPIS 41
A.15 Containment pressure 41
A.16 Decay heat power factor 43
A.17 RCPs velocity 43

B.1 Sensitivity n°9: Containment pressure 6
B.2 Sensitivity n°3: Power after scram 6

C.1 Radial meshing of reactor pressure vessel with respect to the ZION vessel schematic. 11
C.2 PERICLES 2-D bundle test RE0064 quench fronts. 14
C.3 BETHY 6.7c quench time. 15
C.4 Nodalization of fuel rod. 17
C.5 2.(Left) Gap thickness for the average channel (1) and hot rod in the hot FA (2) at level 1,647 m. 3. (Right) Gap heat conductance for the average channel (1) and hot rod in the hot FA (2) at level 1,647 m 18
C.6 The heat conductance for the different channels in the steady-state condition. 19
C.7 1.Core nodalization. 2.Core axial linear heat flux variation 20
C.8 Nodalization of reactor plant using the TECH-M-97 code. 21
C.9 Loop 1 of primary system and reactor vessel 26
C.10 Nodalization schema of secondary side of the cooling loop 26
C.11 Sketch of CATHARE input deck: Primary Side. 36
C.12 Sketch of CATHARE input deck: Reactor Pressure Vessel. 37
C.13 Sketch of CATHARE input deck: Core. 38
C.14 Linear heat generation rate profiles. 39
C.15 Sketch of CATHARE input deck: intact loop 1. 40
C.16 Sketch of CATHARE input deck: broken loop 2. 41
C.17 Sketch of CATHARE input deck: secondary side of the steam generator. 42
C.18 Nodalization sketch for RV .. 44
C.19 Nodalization of broken loop ... 44
C.20 Nodalization of intact loops (Loops 2,3,4) 45
C.21 Nodalization for core radial direction and FA layout 46
C.22 Core configuration .. 47
C.23 Heat structures on RPV .. 48
C.24 Linear heat generation rate profile 50
C.25 Nodalization diagram of Zion NPP for MULTID component 53
C.26 Cross–sectional view of reactor vessel 54
C.27 Nodalization sketch .. 57
C.28 TRACE nodalization for Zion NPP 61
C.29 Vessel nodalization .. 62
C.30 General nodalization .. 67
C.31 Vessel nodalization .. 68
C.32 Vessel nodalization .. 69
C.33 Vessel nodalization .. 69
C.34 Vessel nodalization .. 70
C.35 Vessel nodalization .. 71
C.36 Vessel nodalization .. 77
C.37 Loops nodalization .. 78
C.38 Power generation. .. 79
C.39 Linear power generation. .. 79
C.40 UPC — Core nodalization .. 82
C.41 UPC — Nodalization sketch .. 83
D.1 AEKI — Normalized pressure distribution versus loop length 86
D.2 CEA — Normalized pressure distribution versus loop length 88
D.3 Relevant time trends. .. 91
D.4 EDO — Normalized pressure distribution versus loop length 91
D.5 GRS — Normalized pressure distribution versus loop length 93
D.6 IRSN — Normalized pressure distribution versus loop length 95
D.7 JNES — Normalized pressure distribution versus loop length 97
D.8 KAERI — Normalized pressure distribution versus loop length 100
D.9 KINS — Normalized pressure distribution versus loop length 103
D.10 NRI–1 — Normalized pressure distribution versus loop length 105
D.11 PSI — Normalized pressure distribution versus loop length 108
D.12 Simplified flow diagram of the UMAE. ... 111
D.13 UNIPI1 — Normalized pressure distribution versus loop length 113
D.14 UNIPI–2 — Normalized pressure distribution versus loop length 116
D.15 UPC — Normalized pressure distribution versus loop length 119
E.1 AEKI — Time trends of relevant parameters ... 124
E.2 CEA — Time trends of relevant parameters .. 131
E.3 GRS — Time trends of relevant parameters .. 144
E.4 JNES — Time trends of relevant parameters .. 151
E.5 IRSN — Time trends of relevant parameters ... 158
E.6 KAERI — Time trends of relevant parameters ... 165
E.7 KINS — Time trends of relevant parameters ... 172
E.8 NRI–1 — Time trends of relevant parameters .. 179
E.9 PSI — Time trends of relevant parameters .. 186
E.10 Break areas for the ZION-Kv scaled calculation. .. 192
E.11 Comparison between ZION Kv scaled calculation, LOFT L2-5 Experiment and ZION NPP reference calculation. Upper plenum pressure. ... 194
E.12 Comparison between ZION Kv scaled calculation, LOFT L2-5 Experiment and ZION NPP reference calculation. Primary side mass inventory (relative quantities: 100% = nominal value). ... 194
E.13 Comparison between ZION Kv scaled calculation, LOFT L2-5 Experiment and ZION NPP reference calculation. Total integral break mass flow rate (calculated results are scaled values). ... 195
E.14 Comparison between ZION Kv scaled calculation, LOFT L2-5 Experiment and ZION NPP reference calculation. Total integral ECCS mass flow rate (calculated results are scaled values). ... 195
E.15 Comparison between ZION Kv scaled calculation, LOFT L2-5 Experiment and ZION NPP reference calculation. Average rod cladding temperature (top elevation). 196
E.16 Comparison between ZION Kv scaled calculation, LOFT L2-5 Experiment and ZION NPP reference calculation. Hot rod cladding temperature (2/3 core height). 196
E.17 Comparison between ZION Kv scaled calculation, LOFT L2-5 Experiment and ZION NPP reference calculation. Liquid temperature in upper plenum. 197
E.18 Resulting time sequence of events. ... 199
E.19 List of Relevant Thermalhydraulic Aspects. ... 200
E.20 ZION NPP reference calculation: primary pressure time trends. 201
E.21 ZION NPP reference calculation: secondary side and accumulator pressure time trends. 201
E.22 ZION NPP reference calculation: fluid temperature time trends. 202
E.23 ZION NPP reference calculation: flow rates time trends at the break. 202
E.24 ZION NPP reference calculation: liquid masses time trends. 203
E.25 ZION NPP reference calculation: pressure drops time trends. 203
E.26 ZION NPP reference calculation: hot rod fuel centerline temperature time trends. 204
E.27 ZION NPP reference calculation: average rod surface temperature time trends. 204
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.28</td>
<td>ZION NPP reference calculation: hot rod surface temperature time trends.</td>
<td>205</td>
</tr>
<tr>
<td>E.29</td>
<td>ZION NPP reference calculation: bottom-up and top-down reflooding in the hot rod.</td>
<td>205</td>
</tr>
<tr>
<td>E.30</td>
<td>ZION NPP reference calculation: PCT in the core (different radial and axial position).</td>
<td>206</td>
</tr>
<tr>
<td>E.31</td>
<td>ZION NPP reference calculation: Time Of Reflooding (TOR) in the core (different radial and axial position).</td>
<td>206</td>
</tr>
<tr>
<td>E.32</td>
<td>ZION NPP reference calculation: PCT and TOR in the core (different radial and axial position).</td>
<td>207</td>
</tr>
<tr>
<td>E.33</td>
<td>UNIPI–2 — Time trends of relevant parameters</td>
<td>211</td>
</tr>
<tr>
<td>E.34</td>
<td>UPC — Time trends of relevant parameters</td>
<td>218</td>
</tr>
<tr>
<td>F.1</td>
<td>AEKI — ΔPCT & $\Delta t_{\text{REFLOOD}}$ results</td>
<td>225</td>
</tr>
<tr>
<td>F.2</td>
<td>AEKI — Sensitivity No10: Hot/cold conditions for pellet radius</td>
<td>226</td>
</tr>
<tr>
<td>F.3</td>
<td>CEA — ΔPCT & $\Delta t_{\text{REFLOOD}}$ results</td>
<td>229</td>
</tr>
<tr>
<td>F.4</td>
<td>CEA — Sensitivity No1: Fuel conductivity</td>
<td>230</td>
</tr>
<tr>
<td>F.5</td>
<td>CEA — Sensitivity No2: Gap conductivity</td>
<td>230</td>
</tr>
<tr>
<td>F.6</td>
<td>CEA — Sensitivity No3: Decay power</td>
<td>231</td>
</tr>
<tr>
<td>F.7</td>
<td>CEA — Sensitivity No4: Initial power</td>
<td>231</td>
</tr>
<tr>
<td>F.8</td>
<td>CEA — Sensitivity No5: Maximum linear power</td>
<td>232</td>
</tr>
<tr>
<td>F.9</td>
<td>CEA — Sensitivity No6: LPIS delay</td>
<td>232</td>
</tr>
<tr>
<td>F.10</td>
<td>CEA — Sensitivity No7: Accumulator liquid volume</td>
<td>233</td>
</tr>
<tr>
<td>F.11</td>
<td>CEA — Sensitivity No8: Accumulator pressure</td>
<td>233</td>
</tr>
<tr>
<td>F.12</td>
<td>CEA — Sensitivity No9: Containment pressure</td>
<td>234</td>
</tr>
<tr>
<td>F.13</td>
<td>CEA — Sensitivity No10: Hot/cold conditions for pellet radius</td>
<td>234</td>
</tr>
<tr>
<td>F.14</td>
<td>EDO — ΔPCT & $\Delta t_{\text{REFLOOD}}$ results</td>
<td>240</td>
</tr>
<tr>
<td>F.15</td>
<td>EDO — Sensitivity No1: Fuel conductivity</td>
<td>241</td>
</tr>
<tr>
<td>F.16</td>
<td>EDO — Sensitivity No2: Gap conductivity</td>
<td>241</td>
</tr>
<tr>
<td>F.17</td>
<td>EDO — Sensitivity No3: Decay power</td>
<td>242</td>
</tr>
<tr>
<td>F.18</td>
<td>EDO — Sensitivity No4: Initial power</td>
<td>242</td>
</tr>
<tr>
<td>F.19</td>
<td>EDO — Sensitivity No5: Maximum linear power</td>
<td>243</td>
</tr>
<tr>
<td>F.20</td>
<td>EDO — Sensitivity No6: LPIS delay</td>
<td>243</td>
</tr>
<tr>
<td>F.21</td>
<td>EDO — Sensitivity No7: Accumulator liquid volume</td>
<td>244</td>
</tr>
<tr>
<td>F.22</td>
<td>EDO — Sensitivity No8: Accumulator pressure</td>
<td>244</td>
</tr>
<tr>
<td>F.23</td>
<td>EDO — Sensitivity No9: Containment pressure</td>
<td>245</td>
</tr>
<tr>
<td>F.24</td>
<td>EDO — Sensitivity No10: Hot/cold conditions for pellet radius</td>
<td>245</td>
</tr>
<tr>
<td>F.25</td>
<td>Sensitivity No5. Linear power for hot rod in hot FA</td>
<td>247</td>
</tr>
<tr>
<td>F.26</td>
<td>GRS — ΔPCT & $\Delta t_{\text{REFLOOD}}$ results</td>
<td>249</td>
</tr>
<tr>
<td>F.27</td>
<td>GRS — Sensitivity No1: Fuel conductivity</td>
<td>250</td>
</tr>
<tr>
<td>F.28</td>
<td>GRS — Sensitivity No2: Gap conductivity</td>
<td>250</td>
</tr>
<tr>
<td>F.29</td>
<td>GRS — Sensitivity No3: Decay power</td>
<td>251</td>
</tr>
<tr>
<td>F.30</td>
<td>GRS — Sensitivity No4: Initial power</td>
<td>251</td>
</tr>
<tr>
<td>F.31</td>
<td>GRS — Sensitivity No5: Maximum linear power</td>
<td>252</td>
</tr>
<tr>
<td>F.32</td>
<td>GRS — Sensitivity No6: LPIS delay</td>
<td>252</td>
</tr>
</tbody>
</table>
F.33 GRS — Sensitivity N°7: Accumulator liquid volume .. 253
F.34 GRS — Sensitivity N°8: Accumulator pressure .. 253
F.35 GRS — Sensitivity N°9: Containment pressure ... 254
F.36 IRSN — ∆PCT & ∆t_{REFLOOD} results ... 257
F.37 IRSN — Sensitivity N°1: Fuel conductivity .. 258
F.38 IRSN — Sensitivity N°2: Gap conductivity ... 258
F.39 IRSN — Sensitivity N°3: Decay power ... 259
F.40 IRSN — Sensitivity N°4: Initial power ... 259
F.41 IRSN — Sensitivity N°5: Maximum linear power ... 260
F.42 IRSN — Sensitivity N°6: LPIS delay ... 260
F.43 IRSN — Sensitivity N°7: Accumulator liquid volume ... 261
F.44 IRSN — Sensitivity N°8: Accumulator pressure ... 261
F.45 IRSN — Sensitivity N°9: Containment pressure ... 262
F.46 IRSN — Sensitivity N°10: Hot/cold conditions for pellet radius 262
F.47 JNES — ∆PCT & ∆t_{REFLOOD} results ... 265
F.48 JNES — Sensitivity N°1: Fuel conductivity ... 266
F.49 JNES — Sensitivity N°2: Gap conductivity ... 266
F.50 JNES — Sensitivity N°3: Decay power ... 267
F.51 JNES — Sensitivity N°4: Initial power ... 267
F.52 JNES — Sensitivity N°5: Maximum linear power ... 268
F.53 JNES — Sensitivity N°6: LPIS delay ... 268
F.54 JNES — Sensitivity N°7: Accumulator liquid volume ... 269
F.55 JNES — Sensitivity N°8: Accumulator pressure ... 269
F.56 JNES — Sensitivity N°9: Containment pressure ... 270
F.57 JNES — Sensitivity N°10: Hot/cold conditions for pellet radius 270
F.58 KAERI — ∆PCT & ∆t_{REFLOOD} results ... 273
F.59 KAERI — Sensitivity N°1: Fuel conductivity ... 274
F.60 KAERI — Sensitivity N°2: Gap conductivity ... 274
F.61 KAERI — Sensitivity N°3: Decay power ... 275
F.62 KAERI — Sensitivity N°4: Initial power ... 275
F.63 KAERI — Sensitivity N°5: Maximum linear power ... 276
F.64 KAERI — Sensitivity N°6: LPIS delay ... 276
F.65 KAERI — Sensitivity N°7: Accumulator liquid volume ... 277
F.66 KAERI — Sensitivity N°8: Accumulator pressure ... 277
F.67 KAERI — Sensitivity N°9: Containment pressure ... 278
F.68 KAERI — Sensitivity N°10: Hot/cold conditions for pellet radius 278
F.69 KINS — ∆PCT & ∆t_{REFLOOD} results ... 281
F.70 KINS — Sensitivity N°1: Fuel conductivity ... 282
F.71 KINS — Sensitivity N°2: Gap conductivity ... 282
F.72 KINS — Sensitivity N°3: Decay power ... 283
F.73 KINS — Sensitivity N°4: Initial power ... 283
F.74 KINS — Sensitivity No.5: Maximum linear power 284
F.75 KINS — Sensitivity No.6: LPIS delay ... 284
F.76 KINS — Sensitivity No.7: Accumulator liquid volume 285
F.77 KINS — Sensitivity No.8: Accumulator pressure 285
F.78 KINS — Sensitivity No.9: Containment pressure 286
F.79 KINS — Sensitivity No.10: Hot/cold conditions for pellet radius 286
F.80 NRI–1 — ΔPCT & Δt_{REFLOOD} results 289
F.81 NRI–1 — Sensitivity No.1: Fuel conductivity 290
F.82 NRI–1 — Sensitivity No.2: Gap conductivity 290
F.83 NRI–1 — Sensitivity No.3: Decay power 291
F.84 NRI–1 — Sensitivity No.4: Initial power 291
F.85 NRI–1 — Sensitivity No.5: Maximum linear power 292
F.86 NRI–1 — Sensitivity No.6: LPIS delay .. 292
F.87 NRI–1 — Sensitivity No.7: Accumulator liquid volume 293
F.88 NRI–1 — Sensitivity No.8: Accumulator pressure 293
F.89 NRI–1 — Sensitivity No.9: Containment pressure 294
F.90 NRI–1 — Sensitivity No.10: Hot/cold conditions for pellet radius 294
F.91 PSI — ΔPCT & Δt_{REFLOOD} results 297
F.92 PSI — Sensitivity No.1: Fuel conductivity 298
F.93 PSI — Sensitivity No.2: Gap conductivity 298
F.94 PSI — Sensitivity No.3: Decay power ... 299
F.95 PSI — Sensitivity No.4: Initial power ... 299
F.96 PSI — Sensitivity No.5: Maximum linear power 300
F.97 PSI — Sensitivity No.6: LPIS delay .. 300
F.98 PSI — Sensitivity No.7: Accumulator liquid volume 301
F.99 PSI — Sensitivity No.8: Accumulator pressure 301
F.100 PSI — Sensitivity No.9: Containment pressure 302
F.101 UNIPI1 — Sensitivity No.1: Fuel conductivity 305
F.102 UNIPI1 — Sensitivity No.2: Gap conductivity 305
F.103 UNIPI1 — Sensitivity No.3: Decay power 306
F.104 UNIPI1 — Sensitivity No.4: Initial power 306
F.105 UNIPI1 — Sensitivity No.5: Maximum linear power 307
F.106 UNIPI1 — Sensitivity No.6: LPIS delay 307
F.107 UNIPI1 — Sensitivity No.7: Accumulator liquid volume 308
F.108 UNIPI1 — Sensitivity No.8: Accumulator pressure 308
F.109 UNIPI1 — Sensitivity No.9: Containment pressure 309
F.110 Specification for sensitivity cases 5, 6 and 16 310
F.111 ΔPCT and Δt_{tref} results for each sensitivity calculation 310
F.112 Time trends of upper plenum pressure for each sensitivity calculation. 311
F.113 Time trends of primary system mass inventory for each sensitivity calculation. 311
F.114 Time trends of hot rod surface temperature (zone 5 - 2/3 core height) for each sensitivity calculation. 312
F.115UNIPI–2 — ΔPCT & $\Delta t_{\text{REFLOOD}}$ results .. 316
F.116UNIPI–2 — Sensitivity No1: Fuel conductivity .. 317
F.117UNIPI–2 — Sensitivity No2: Gap conductivity .. 317
F.118UNIPI–2 — Sensitivity No3: Decay power .. 318
F.119UNIPI–2 — Sensitivity No4: Initial power .. 318
F.120UNIPI–2 — Sensitivity No5: Maximum linear power .. 319
F.121UNIPI–2 — Sensitivity No6: LPIS delay .. 319
F.122UNIPI–2 — Sensitivity No7: Accumulator liquid volume .. 320
F.123UNIPI–2 — Sensitivity No8: Accumulator pressure .. 320
F.124UNIPI–2 — Sensitivity No9: Containment pressure .. 321
F.125UNIPI–2 — Sensitivity No10: Hot/cold conditions for pellet radius 321
F.126UPC — ΔPCT & $\Delta t_{\text{REFLOOD}}$ results .. 324
F.127UPC — Sensitivity No1: Fuel conductivity .. 325
F.128UPC — Sensitivity No2: Gap conductivity .. 325
F.129UPC — Sensitivity No3: Decay power .. 326
F.130UPC — Sensitivity No4: Initial power .. 326
F.131UPC — Sensitivity No5: Maximum linear power .. 327
F.132UPC — Sensitivity No6: LPIS delay .. 327
F.133UPC — Sensitivity No7: Accumulator liquid volume .. 328
F.134UPC — Sensitivity No8: Accumulator pressure .. 328
F.135UPC — Sensitivity No9: Containment pressure .. 329
F.136UPC — Sensitivity No10: Hot/cold conditions for pellet radius 329
F.137UPC — Sensitivity No5: Linear power for hot fuel assembly in hot channel 330
F.138UPC — Sensitivity No5: Linear power for hot rod in hot fuel assembly 331

G.1 Maximum cladding temperature (Relap5) .. 333
G.2 Broken loop Vessel side pressure (Relap5) .. 334
G.3 Zoom in Broken loop Vessel side pressure (Relap5) .. 334
G.4 Maximum cladding temperature (Cathare) .. 335
G.5 Broken loop Vessel side pressure (Cathare) .. 335
G.6 Zoom in Broken loop Vessel side pressure (Cathare) .. 336
G.7 Maximum cladding temperature (Relap5 vs. Cathare) .. 337
G.8 Broken loop Vessel side pressure (Relap5 vs. Cathare) .. 337
G.9 Zoom in Broken loop Vessel side pressure (Relap5 vs. Cathare) 338
G.10 Maximum cladding temperature (Relap5, MARS, Athlet, Trace) 339
G.11 Broken loop Vessel side pressure (Relap5, MARS, Athlet, Trace) 339
G.12 Zoom in Broken loop Vessel side pressure (Relap5, MARS, Athlet, Trace) 340
G.13 Maximum cladding temperature (All) .. 341
G.14 Broken loop Vessel side pressure (All) .. 341
G.15 Zoom in Broken loop Vessel side pressure (All) .. 342
List of Tables

1.1 List of participants ... 4
1.2 List of files submitted by participants to BEMUSE phase IV 5
2.1 Time sequence of imposed events 8
3.1 Nodalization resources used by each participant 9
3.2 Hot rod temperatures — Zone 2 12
3.3 Hot rod temperatures — Zone 5 12
3.4 Time sequence of imposed events 13
4.1 Absolute pressure versus loop length 15
4.2 Steady state relevant values 17
5.1 Resulting time sequence of events 19
5.2 List of time trends ... 20
5.3 RTA — Comparison among participants 37
6.1 Sensitivity parameters .. 39
6.2 Sensitivity cases calculated by participants 40
6.3 ΔPCT and Δt\text{REFLOOD} results from sensitivity calculations 73
A.1 Steady-state main parameters 8
A.2 Pressure along the loop ... 9
A.3 Mass flow per rod ... 9
A.4 Core bypass mass flow ... 9
A.5 Upper head bypass mass flow 9
A.6 Upper head temperatures 10
A.7 Thermal conductivity versus temperature for Stainless Steel: AISI 304 10
A.8 Volumetric heat capacity versus temperature for Stainless Steel: AISI 304 10
A.9 Thermal conductivity versus temperature for Inconel-600 11
A.10 Volumetric heat capacity versus temperature for Inconel-600 11
A.11 Thermal conductivity versus temperature for UO₂ 13
A.12 Specific heat capacity versus temperature for UO₂ 14
A.13 Thermal conductivity versus temperature for the gap 15
A.14 Volumetric heat capacity versus temperature for the gap 16
A.15 Thermal conductivity versus temperature for Zr-4 17
A.16 Specific heat capacity versus temperature for Zr-4 .. 18
A.17 Fuel rods characteristics. Cold conditions .. 20
A.18 Fuel rods characteristics. Hot conditions for the average rod 20
A.19 Linear heat generation rate profiles for fuel ... 21
A.20 Linear heat generation rate profiles for moderator .. 22
A.21 Core heat structures features ... 22
A.22 Fuel factor multiplier ... 23
A.23 Moderator factor multiplier .. 24
A.24 Heat structure 2041 ... 27
A.25 Heat structure 1000 .. 27
A.26 Heat structure 1001 .. 28
A.27 Heat structure 3000 .. 28
A.28 Heat structure 3150 .. 28
A.29 Heat structure 3160 .. 29
A.30 Heat structure 3200 .. 29
A.31 Heat structure 3230 .. 29
A.32 Heat structure 3220 .. 30
A.33 Heat structure 3250 .. 30
A.34 Heat structure 3270 .. 30
A.35 Heat structure 3350 .. 31
A.36 Heat structure 3500 .. 31
A.37 Heat structure 3510 .. 31
A.38 Heat structure 3550 .. 32
A.39 Heat structure 3570 .. 32
A.40 Heat structure 3560 .. 32
A.41 Westinghouse pump homologous single phase head curves 33
A.42 Westinghouse pump single phase homologous torque curves 34
A.43 Head curves, difference curve data .. 35
A.44 Torque curves, difference curve data .. 36
A.45 Time sequence of imposed events .. 39
A.46 LPIS pressure-flow curve .. 40
A.47 Containment pressure ... 40
A.48 Decay heat power ... 42
A.49 Pump velocity for primary coolant pumps in intact loops 44
A.50 Pump velocity for primary coolant pumps in broken loop 45
A.51 Nodalization qualification at steady state level .. 46
A.52 Pressure along the loop .. 47
A.53 Resulting time sequence of main events .. 48
A.54 Time trends .. 49
A.55 Qualitative evaluation ... 50

B.1 Sensitivity parameters .. 2
B.2 Sensitivity n°3: Power after scram, lower case 3
B.3 Sensitivity n°3: Power after scram, upper case 4
B.4 Fuel rods characteristics. Cold conditions for the average rod 5
B.5 Sensitivity n°9: Containment pressure 5

C.1 Nodalization details. ... 11
C.2 Nodalization Code Resources. 19
C.3 Relative Power Peaking Factors for the Heated Channels. 19
C.4 Axial relative power distribution in the core. 20
C.5 - Maximum Linear Power. .. 20
C.6 Nodalisation Code Resources of the primary circuit 32
C.7 Core heat structures features .. 34
C.8 Nodalisation Code Resources of the primary circuit 35
C.9 Comparisons of the 1D and 3D modeling. 52
C.10 Maximum linear heat generation rates for Zones 2 and 5 60
C.11 ZION NPP power subdivision among the five RELAP5 group of heat structures. 65
C.12 Fuel rod characteristics (hot condition for the average rod) 65
C.13 RELAP5 nodalization code resources. 66
C.14 Maximum linear power and location. 66
C.15 Overview of Cathare2 code resources 76
C.16 Maximum linear heat generation rates (kW/m) for zones 2 and 5 in the locations required for the submission results 76

D.1 AEKI — Pressure distribution along the loop 85
D.2 AEKI — Nodalization and steady state data table 87
D.3 CEA — Pressure distribution along the loop 88
D.4 CEA — Nodalization and steady state data table 89
D.5 EDO — Pressure distribution along the loop 90
D.6 EDO — Nodalization and steady state data table 92
D.7 GRS — Pressure distribution along the loop 93
D.8 GRS — Nodalization and steady state data table 94
D.9 IRSN — Pressure distribution along the loop 95
D.10 IRSN — Nodalization and steady state data table 96
D.11 JNES — Pressure distribution along the loop 97
D.12 JNES — Nodalization and steady state data table 98
D.13 KAERI — Pressure distribution along the loop 99
D.14 KAERI — Nodalization and steady state data table 101
D.15 KINS — Pressure distribution along the loop 102
D.16 KINS — Nodalization and steady state data table 104
D.17 NRI–1 — Pressure distribution along the loop 105
D.18 NRI–1 — Nodalization and steady state data table 106
D.19 PSI — Pressure distribution along the loop 107
D.20 PSI — Nodalization and steady state data table 109
D.21 UNIPI1 — Pressure distribution along the loop 112
D.22 UNIPI1 — Nodalization and steady state data table 114
D.23 UNIPI-2 — Pressure distribution along the loop 116
D.24 UNIPI-2 — Nodalization and steady state data table 117
D.25 UPC — Pressure distribution along the loop 118
D.26 UPC — Nodalization and steady state data table 120

E.1 AEKI — Resulting time sequence of events 122
E.2 AEKI — Reference case results ... 123
E.3 CEA — Resulting time sequence of events 129
E.4 CEA — Reference case results .. 130
E.5 EDO — Resulting time sequence of events 137
E.6 EDO — Reference case results .. 138
E.7 GRS — Resulting time sequence of events 142
E.8 GRS — Reference case results .. 143
E.9 JNES — Resulting time sequence of events 149
E.10 JNES — Reference case results 150
E.11 IRSN — Resulting time sequence of events 156
E.12 IRSN — Reference case results 157
E.13 KAERI — Resulting time sequence of events 163
E.14 KAERI — Reference case results 164
E.15 KINS — Resulting time sequence of events 170
E.16 KINS — Reference case results 171
E.17 NRI–1 — Resulting time sequence of events 177
E.18 NRI–1 — Reference case results 178
E.19 PSI — Resulting time sequence of events 184
E.20 PSI — Reference case results 185
E.21 Kv scaled features of the ZION Kv nodalization 192
E.22 Comparison between ZION Kv scaled calculation and LOFT L2-5 Experiment: Resulting events. .. 193
E.23 UNIPI–2 — Resulting time sequence of events 209
E.24 UNIPI–2 — Reference case results 210
E.25 UPC — Resulting time sequence of events 216
E.26 UPC — Reference case results 217

F.1 AEKI — List of sensitivity cases performed. ΔPCT & Δt_{REFLOO} 224
F.2 CEA — List of sensitivity cases performed. ΔPCT & Δt_{REFLOO} 228
F.3 EDO — List of sensitivity cases performed. ΔPCT & Δt_{REFLOO} 239
F.4 GRS — List of sensitivity cases performed. ΔPCT & Δt_{REFLOO} 248
F.5 IRSN — List of sensitivity cases performed. ΔPCT & Δt_{REFLOO} 256
F.6 JNES — List of sensitivity cases performed. ΔPCT & Δt_{REFLOO} 264
F.7 KAERI — List of sensitivity cases performed. $\Delta \text{PCT} \& \Delta t_{\text{REFLOOD}}$ 272
F.8 KINS — List of sensitivity cases performed. $\Delta \text{PCT} \& \Delta t_{\text{REFLOOD}}$ 280
F.9 NRI–1 — List of sensitivity cases performed. $\Delta \text{PCT} \& \Delta t_{\text{REFLOOD}}$ 288
F.10 PSI — List of sensitivity cases performed. $\Delta \text{PCT} \& \Delta t_{\text{REFLOOD}}$ 296
F.11 UNIPI1 — List of sensitivity cases performed. $\Delta \text{PCT} \& \Delta t_{\text{REFLOOD}}$ 304
F.12 UNIPI–2 — List of sensitivity cases performed. $\Delta \text{PCT} \& \Delta t_{\text{REFLOOD}}$ 315
F.13 UPC — List of sensitivity cases performed. $\Delta \text{PCT} \& \Delta t_{\text{REFLOOD}}$ 323
EXECUTIVE SUMMARY

Background

Since nuclear energy was first used to produce electricity in the 1950s, the evaluation of nuclear power plant performance during transient conditions has been the main issue in thermal-hydraulic safety research worldwide (see State of the Art Report by CSNI and Compendium of ECCS Researches by US NRC, both issued in 1989).

Different computer codes such as ATHLET, CATHARE, RELAP, TRAC and TRACE have been developed since then for this purpose and are widely used. Such sophisticated codes can predict time trends of any quantity of interest during any transient of a LWR. Anyway, in order to assess the capabilities of the codes and due to the lack of suitable measurements in plants, comparison of calculated results with experimental data recorded in small scale facilities is needed. The amount of available experimental data is huge: some have been obtained in very simple loops (like Basic Test Facilities or Separate Effect Test Facilities), others in very complex Integral Test Facilities. The applicability of a code to predict a specific plant situation relies, at least, on two conditions: the experimental data selected for qualifying a code have to reproduce the phenomena expected in the plant and codes have to be able to qualitatively and quantitatively reproduce those data. For best-estimate codes like the above mentioned ones, the calculation of the plant transient has to include an additional analysis evaluating the uncertainties of the obtained results. This analysis can be completed with a sensitivity analysis, which provides additional information.

The BEMUSE (Best Estimate Methods - Uncertainty and Sensitivity Evaluation) programme - promoted by the working Group on Accident Management and Analysis (GAMA) and endorsed by the committee on the safety of nuclear installations (CSNI)- represents in this context an important step towards reliable application of high-quality best-estimate and uncertainty and sensitivity evaluation methods. The application of these methods to a Large-Break Loss of Coolant Accident (LB-LOCA) constitutes the main activity of the programme, structured into two main stages:

- **Step 1**: Best-estimate and uncertainty and sensitivity evaluations of the LOFT L2-5 test (Phases II and III). LOFT is the only Integral Test Facility with a nuclear core where safety experiments have been performed.

- **Step 2**: Best-estimate and uncertainty and sensitivity evaluations of a nuclear power plant (Phases IV and V).

The "a priori" presentation of the uncertainty methodologies to be used by the participants (Phase I) is usually included in the first stage, whereas the final phase (Phase VI) consisting on the synthesis of the results obtained in previous phases with conclusions and recommendations is usually included in the second stage.

Objective of the work

The BEMUSE programme is focused on applications of the uncertainty methodologies to LB-LOCA scenarios. The main goals of the programme are:
• To evaluate the practicability, quality and reliability of best-estimate methods including uncertainty evaluations in applications relevant to nuclear reactor safety;

• To develop common understanding;

• To promote/facilitate their use by the regulatory bodies and the industry

The scope of Phase IV of the BEMUSE programme is the simulation of a LB–LOCA in a Nuclear Power Plant using experience gained in the previous Phase II. Calculation results will be the basis for uncertainty evaluation, to be performed in next phase.

The objectives of the activity are:

• To simulate a LB–LOCA reproducing the phenomena associated to the scenario.

• To have a common, well-documented basis for the execution of the uncertainty evaluation step in Phase V.

Task specification

The activity followed the example of Phase II.

The selection of the plant has been a quite important issue. Some other options were considered. The group finally made the decision of using Zion plant and CSNI approved the choice. Zion Station was a 4 loop dual-reactor nuclear power plant of Westinghouse design. An input deck of the plant existed for TRACE and RELAP5 codes.

NRC provided the input decks of Zion plant for TRACE and RELAP5 codes and the coordinators prepared a specification that enabled the users of different computer codes to produce their own Zion input decks. For this purpose, along with plant parameters, the main features of the LBLOCA scenario were specified in order to assure common initial and boundary conditions.

Similarly to the activity performed in Phase II, a list of sensitivity calculations was proposed to study the influence of different parameters such as material properties, initial and boundary conditions upon the behaviour of key parameters of the scenario.

Main Results

Results can be summarized as follows:

• All participants managed to simulate the scenario and predict the main parameters with credible consistency.

• Maximum values of PCT predicted by participants are quite close one each other.

• PCT time trends and timing of complete core rewet still show some disagreements.

• A database, including comparative tables and plots has been produced. This database is suitable for providing the explanations needed for the following phases.

More in detail and related to steady state achievement, participants managed to reproduce the pressure vs. length reference curve and to match the more significant parameters for the scenario simulation. Discrepancies in steady state appeared only in some other parameters like those related to the secondary system which are not that much influential.
Related to the reference case, the core thermal behaviour is the most interesting aspect to report. Cladding temperature time trends produced show a consistent behaviour. The spread of results for the PCT is about the same order of magnitude than that of Phase II (roughly 260-280 K). The major differences between results come with the reflooding behaviour and mainly its duration. In this case the report correlates this point with some code effect.

Conclusions

Phase IV results are a step forward that contributes to the general goals of BEMUSE project.

At the time when this Phase IV Report is written, all participants are developing a Phase V analysis based on the reference calculations produced in Phase IV. The coordinators want to emphasize this point as a proof of how participants accept the usefulness of Phase IV.

It is clear that dispersion bands exist but it is also clear that the effort of explaining the reasons of such dispersion is a valuable outcome from this phase. The outcome of BEMUSE Phase IV is also helpful to understand the nuances existing inside the user effect and also to clarify the differences between user effect and code effect.

Assumptions made by the user due to the lack of information are not part of the traditional user effect and this report is useful to deal with them.

Participants, in average, have found or corroborated the most influential parameters regarding the their influence on PCT and $t_{REFLOOD}$. The sensitivity study performed in Phase IV has also pointed out that the user and code effects can appear not only in obtaining a reference case value, but also when analyzing variations on the reference case.

Sensitivity calculation results are a good guidance for developing Phase V uncertainty evaluation. BEMUSE Phase IV is a reference good enough to start with Phase V development.
Contents

ABBREVIATIONS

LIST OF FIGURES

LIST OF TABLES

EXECUTIVE SUMMARY

1 INTRODUCTION

2 PLANNING AND CONDUCT OF THE BEMUSE PHASE IV

3 COMPARISON AMONG PARTICIPANTS INPUT DECKS

4 COMPARISON AND EVALUATION OF STEADY-STATE RESULTS

5 COMPARISON AND EVALUATION OF REFERENCE RESULTS

6 COMPARISON AND EVALUATION OF SENSITIVITY RESULTS
6.1 Purpose and framework of the study ... 39
6.2 Time trends obtained in the calculations 40
6.3 Sensitivity analysis results ... 73
6.4 Sensitivity analysis summary and conclusions 81

7 CONCLUSIONS .. 83

BIBLIOGRAPHY .. 85

A Input and Output specifications for simulation of a LB-LOCA in ZION-1 NPP 87
A.1 ZION Power Plant description .. 2
A.2 Input deck description ... 3
 A.2.1 Description of the original input deck 3
 A.2.2 Description of the supplied input deck 3
 A.2.3 Additional information .. 4
A.3 Common basis and requirements for simulation performance 6
 A.3.1 Core detail ... 6
 A.3.2 Downcomer / lower plenum ... 6
 A.3.3 Reflood options .. 7
 A.3.4 Break nodalization .. 7
 A.3.5 Gap / fuel ... 7
 A.3.6 CCFL / upper plate ... 7
 A.3.7 ΔP along the loops .. 7
 A.3.8 Upper header / bypass ... 7
 A.3.9 Core bypass ... 7
A.4 Steady-state parameters description ... 8
 A.4.1 Material properties .. 8
 A.4.2 Core heat structures ... 20
 A.4.3 Steam generators heat structures 27
 A.4.4 Pressurizer heat structures ... 27
 A.4.5 Vessel heat structures ... 27
 A.4.6 Reactor coolant pumps curves ... 33
A.5 Transient description ... 39
 A.5.1 Transient tables ... 40
A.6 Output evaluation ... 46
 A.6.1 Steady State .. 46
 A.6.2 Transient ... 48
A.7 references ... 52

B Sensitivity calculations specifications .. 53
B.1 Introduction ... 2
B.2 List of sensitivity parameters .. 2
B.3 Output ... 7
C Codes and input decks

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1 CEA, France</td>
<td>Description of the code: CATHARE</td>
<td>10</td>
</tr>
<tr>
<td>C.1.1</td>
<td>Description of the input deck</td>
<td>10</td>
</tr>
<tr>
<td>C.1.2</td>
<td>Comments on the CATHARE calculations for the phase IV of BEMUSE</td>
<td>12</td>
</tr>
<tr>
<td>C.2 EDO GUIDROPRESS, Russia</td>
<td>Description of the code: TECH-M-97</td>
<td>16</td>
</tr>
<tr>
<td>C.2.1</td>
<td>Description of the input deck</td>
<td>16</td>
</tr>
<tr>
<td>C.3 GRS, Germany</td>
<td>Description of the code: ATHLET</td>
<td>23</td>
</tr>
<tr>
<td>C.3.1</td>
<td>Description of the input deck</td>
<td>24</td>
</tr>
<tr>
<td>C.4 IRSN, France</td>
<td>Description of the code: CATHARE2.5</td>
<td>27</td>
</tr>
<tr>
<td>C.4.1</td>
<td>Description of the IRSN CATHARE Input Deck</td>
<td>31</td>
</tr>
<tr>
<td>C.5 JNES, Japan</td>
<td>Description of the code: TRACE v4.05</td>
<td>43</td>
</tr>
<tr>
<td>C.5.1</td>
<td>Description of the input deck</td>
<td>43</td>
</tr>
<tr>
<td>C.6 KAERI, South Korea</td>
<td>Description of the Code: MARS 3.1</td>
<td>51</td>
</tr>
<tr>
<td>C.6.1</td>
<td>Description of the Input Deck</td>
<td>51</td>
</tr>
<tr>
<td>C.6.3</td>
<td>References</td>
<td>55</td>
</tr>
<tr>
<td>C.7 KINS, South Korea</td>
<td>Description of the code: RELAP5/MOD3.3</td>
<td>56</td>
</tr>
<tr>
<td>C.7.1</td>
<td>Description of the input deck</td>
<td>56</td>
</tr>
<tr>
<td>C.7.4</td>
<td>Maximum linear heat generation rates</td>
<td>56</td>
</tr>
<tr>
<td>C.8 NRI–1, Czech Republic</td>
<td>Description of the code: RELAP5/MOD3.3</td>
<td>58</td>
</tr>
<tr>
<td>C.8.1</td>
<td>Description of the input deck</td>
<td>58</td>
</tr>
<tr>
<td>C.9 PSI, Switzerland</td>
<td>Description of the code: TRACEv5.0rc3</td>
<td>59</td>
</tr>
<tr>
<td>C.9.1</td>
<td>Description of the input deck</td>
<td>59</td>
</tr>
<tr>
<td>C.10 UNIPI1 Italy</td>
<td>Description of the code: Cathare2 v2.5_1</td>
<td>63</td>
</tr>
<tr>
<td>C.10.1</td>
<td>CODES AND INPUTS</td>
<td>63</td>
</tr>
<tr>
<td>C.11 UNIPI-2, Italy</td>
<td>Description of the code: RELAP5/MOD3.3</td>
<td>73</td>
</tr>
<tr>
<td>C.11.1</td>
<td>Description of the input deck</td>
<td>73</td>
</tr>
<tr>
<td>C.12 UPC, Spain</td>
<td>Description of the code: RELAP5/MOD3.3</td>
<td>80</td>
</tr>
<tr>
<td>C.12.1</td>
<td>Description of the input deck</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Nodalization sketch</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Maximum linear heat generation rates</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>55</td>
</tr>
</tbody>
</table>
D Steady state achievement

D.1 AEKI, Hungary ... 85
D.2 CEA, France ... 88
D.3 EDO, Russia ... 90
 D.3.1 References ... 92
D.4 GRS, Germany .. 93
D.5 IRSN, France ... 95
D.6 JNES, Japan ... 97
D.7 KAERI, South Korea .. 99
D.8 KINS, South Korea ... 102
D.9 NRI–1, Czech Republic .. 105
D.10 PSI, Switzerland .. 107
D.11 UNIPI1, Italy .. 110
 D.11.1 NODALIZATION QUALIFICATION PROCESS AND RESULTS 110
D.12 UNIPI–2, Italy .. 116
D.13 UPC, Spain ... 118

E Reference calculations

E.1 AEKI Reference case ... 122
E.2 CEA Reference case ... 129
E.3 EDO GIDROPRESS Reference case 136
E.4 GRS Reference case .. 142
E.5 JNES Reference case ... 149
E.6 IRSN Reference case ... 156
E.7 KAERI Reference case .. 163
E.8 KINS Reference case ... 170
E.9 NRI–1 Reference case .. 177
E.10 PSI Reference case ... 184
E.11 UNIPI1 Reference case .. 191
 E.11.1 Kv-Scaling analysis: ZION NPP nodalization scaled to LOFT L2.5 experiment 191
 E.11.2 RELAP5 ZION NPP: Reference Transient Calculation 198
E.12 UNIPI–2 Reference case ... 209
E.13 UPC Reference case ... 216

F Sensitivity calculations

F.1 AEKI, Hungary ... 224
 F.1.1 Sensitivity calculations results 224
 F.1.2 Comments on sensitivity calculations 227
F.2 CEA, France ... 228
 F.2.1 Sensitivity calculations results 228
 F.2.2 Comments on sensitivity calculations 235
F.3 EDO, Russia ... 239
CHAPTER 1

INTRODUCTION

1.1 Framework

The BEMUSE (Best Estimate Methods — Uncertainty and Sensitivity Evaluation) programme promoted by the Working Group on Accident Management and Analysis (GAMA) and endorsed by the committee on the safety of Nuclear Installations (CSNI) represents an important step towards reliable application of best-estimate codes.

The final objectives of the work performed on this programme are:

- To evaluate the practicability, quality and reliability of best-estimate methods including uncertainty evaluation in applications relevant to nuclear reactor safety;
- To develop common understanding;
- To promote/facilitate their use by the regulatory bodies and the industry.

The present document deals with the activities performed by the participants during the Phase IV of BEMUSE. The experience gained in previous Phase II of BEMUSE is used to simulate a LB-LOCA in a NPP using best estimate codes.

The objective of Phase IV of BEMUSE is to produce a reference calculation of a LB-LOCA in the selected NPP ensuring a suitable starting point for Phase V which is devoted to uncertainty evaluation.

The selection of the plant is a quite important issue. When the project started in 2003, TMI-1 was the suggested plant. The main reason for such suggestion was that the plant was known by different participants as its input deck had been used in one previous common exercise. Once BEMUSE project was on-going, participants disagreed on maintaining the original selection and some other options were considered. None of the considered options was actually made available by the different plant owners. At this point the group made the decision of using Zion plant and CSNI approved the choice. Zion Station was a 4 loop dual-reactor nuclear power plant of Westinghouse design. An input deck of the plant existed for TRACE and RELAP5 codes. The main weak point was that, as it is in permanently shutdown condition from 1998, no detailed information could be made available if needed during the development of the project.

NRC provided the input decks of Zion plant for TRACE and RELAP5 codes and the coordinators prepared a specification (see Appendix A) with the main purpose of conducting the exercise but also to make explicit the information needed to allow the users of other codes to produce their own Zion input decks. The input/output specification gives all the necessary detail on this point.

1.2 Content of the document

The framework of the BEMUSE activity and the objectives to be reached during Phase IV are stated in Chapter 1 along with the information on participants organizations.
Chapter 2 deals with the planning and conduct of BEMUSE Phase IV, explaining how the specification has been set up. Taking into account what has been said previously, the information presented in the specification has been mainly derived from the two input decks supplied by NRC. In the areas where this information was not complete enough, some assumptions were made and added to the specification. Assumptions related to fuel were made in accordance with Phase II available information.

Chapter 3 gives a brief description of the input decks used by participants in the present phase.

Chapter 4 compares steady-state calculation results with proposed values for Phase IV exercise.

Chapter 5 compares transient results among participants for the reference case along with some comments evaluating them. The structure of the section includes a comparative table of the resulting sequence of main events, some plots about selected time trends, a table summarizing Relevant Thermal-hydraulic Aspects (RTA) related to the transient and finally some remarks on the comparison.

Chapter 6 summarizes the results obtained after performing a number of sensitivity cases.

Conclusions are established in Chapter 7 and, finally, References follow. The Appendixes provide detailed information on the specification itself, as well as all the calculations performed.

1.3 Participating Organizations

Thirteen participants coming from the following thirteen organizations have been participating in the Phase IV of the Programme.

1. AEKI, Hungary
2. CEA, France
3. EDOGIDROPRESS, Russia
4. GRS, Germany
5. IRSN, France
6. JNES, Japan
7. KAERI, South Korea
8. KINS, South Korea
9. NRI–1, Czech Republic
10. PSI, Switzerland
11. UNIPI–1, Italy
12. UNIPI–2, Italy
13. UPC, Spain

Six different thermal-hydraulic system codes have been used, sometimes with different versions (as shown in the corresponding tables):

- ATHLET (2 participants)
- CATHARE (3 participants)
- MARS (1 participant)
• RELAP5 (4 participants)
• TECH-M (1 participant)
• TRACE (2 participants)

A brief description of each code is given in Appendix C by each participant. The organizations participating and the last version of the files submitted are listed in Tables 1.1 and 1.2.
<table>
<thead>
<tr>
<th>N</th>
<th>Name</th>
<th>E-mail</th>
<th>Organization’s name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A. de Crecy</td>
<td>agnes.decrecy@cea.fr</td>
<td>CEA</td>
<td>CATHARE V2.5,1 mod.3.1</td>
</tr>
<tr>
<td></td>
<td>P. Bazin</td>
<td>pascal.bazin@cea.fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. Germain</td>
<td>philippe.germain@cea.fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S. Borisov</td>
<td>fil@grpress.podolsk.ru</td>
<td>FSUE EDO</td>
<td>GIDROPRESS</td>
</tr>
<tr>
<td>3</td>
<td>H. Glaser</td>
<td>gls@grs.de</td>
<td>GRS</td>
<td>ATHLET 2.1A</td>
</tr>
<tr>
<td></td>
<td>T. Skorek</td>
<td>skt@grs.de</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>J. Joucla</td>
<td>jerome.joucla@irsn.fr</td>
<td>IRSN</td>
<td>CATHARE2 V2.5,1 mod5.1</td>
</tr>
<tr>
<td></td>
<td>P. Probst</td>
<td>pierre.probst@irsn.fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A. Ui</td>
<td>ui-atsushi@jnes.go.jp</td>
<td>JNES</td>
<td>TRACE ver.4.05</td>
</tr>
<tr>
<td>6</td>
<td>B.D. Chung</td>
<td>bdchung@keri.re.kr</td>
<td>KAERI</td>
<td>MARS 3.1</td>
</tr>
<tr>
<td>7</td>
<td>D. Y. Oh</td>
<td>k392ody@kins.re.kr</td>
<td>KINS</td>
<td>RELAP5/MOD3.3</td>
</tr>
<tr>
<td>8</td>
<td>R. Pernica</td>
<td>per@ujv.cz</td>
<td>NRI–1</td>
<td>RELAP5/MOD3.3</td>
</tr>
<tr>
<td></td>
<td>M. Kyncl</td>
<td>milos.kyncl@ujv.cz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A. Manera</td>
<td>annalisa.manera@psi.ch</td>
<td>PSI</td>
<td>TRACE5.0rc3</td>
</tr>
<tr>
<td>10</td>
<td>A. Petruzzi</td>
<td>a.petruzzi@ing.unipi.it</td>
<td>UNIPI–1</td>
<td>RELAP/MOD3.2</td>
</tr>
<tr>
<td></td>
<td>F. D’Auria</td>
<td>f.dauria@ing.unipi.it</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>A. Del Nevo</td>
<td>a.delnevo@ing.unipi.it</td>
<td>UNIPI–2</td>
<td>CATHARE2 V2.5,1 mod6.1</td>
</tr>
<tr>
<td></td>
<td>F. D’Auria</td>
<td>f.dauria@ing.unipi.it</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>M. Perez</td>
<td>marina.perez@upc.edu</td>
<td>UPC</td>
<td>RELAP5/MOD3.3</td>
</tr>
<tr>
<td></td>
<td>F. Reventos</td>
<td>francesc.reventos@upc.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. Batet</td>
<td>luis.batet@upc.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>I. Tóth</td>
<td>tothi@sunserv.kfki.hu</td>
<td>AEKI</td>
<td>ATHLET 2.0A</td>
</tr>
<tr>
<td></td>
<td>I. Trosztel</td>
<td>trosztel@aeki.kfki.hu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1: List of participants
<table>
<thead>
<tr>
<th>No.</th>
<th>Participant</th>
<th>Organization</th>
<th>EXCEL TEMPLATES</th>
<th>Last Submission</th>
</tr>
</thead>
</table>
| 1 | I. Tóth | AEKI | TEMPLATE No.1_STST_AEKI.xls
| | I. Trosztel | | TEMPLATE No.1_TRANSIENT_AEKI.xls
| | | | SENSITIVITIES_AEKI.xls | 01/2008
| | | | | 01/2008 |
| 2 | A. de Crecy | CEA | TEMPLATE No.1_STST_CEA.xls
| | P. Bazin | | TEMPLATE No.1_TRANSIENT_CEA.xls
| | | | SENSITIVITIES_CEA.xls | 01/2008
| | | | | 09/2007 |
| 3 | S. Borisov | FSUE EDO | TEMPLATE No.1_STST_EDO.xls
| | | GIDROPRESS | TEMPLATE No.1_TRANSIENT_EDO.xls
| | | | SENSITIVITIES_EDO.xls | 01/2008
| | | | | 12/2007 |
| 4 | H. Glaeser | GRS | TEMPLATE No.1_STST_GRS.xls
| | T. Skorek | | TEMPLATE No.1_TRANSIENT_GRS.xls
| | | | SENSITIVITIES_GRS.xls | 11/2007
| | | | | 12/2007 |
| 5 | J. Joucla | IRSN | TEMPLATE No.1_STST_IRSN.xls
| | P. Prost | | TEMPLATE No.1_TRANSIENT_IRSN.xls
| | | | SENSITIVITIES_IRSN.xls | 11/2007
| | | | | 11/2007 |
| 6 | A. Ui | JNES | TEMPLATE No.1_STST_JNES.xls
| | | | TEMPLATE No.1_TRANSIENT_JNES.xls
| | | | SENSITIVITIES_JNES.xls | 12/2007
| | | | | 12/2007 |
| 7 | B.D. Chung | KAERI | TEMPLATE No.1_STST_KAERI.xls
| | | | TEMPLATE No.1_TRANSIENT_KAERI.xls
| | | | SENSITIVITIES_KAERI.xls | 12/2007
| | | | | 12/2007 |
| 8 | D. Y. Oh | KINS | TEMPLATE No.1_STSTRev3_KINS071008.xls
| | | | TEMPLATE No.1_TRANSIENTRev3_KINS071008.xls
| | | | SENSITIVITIESRev03_KINS071207.xls | 10/2007
| | | | | 10/2007 |
| 9 | R. Pernica | NRI-1 | TEMPLATE No.1_STST_NRI1.xls
| | M. Kyncl | | TEMPLATE No.1_TRANSIENT_NRI1.xls
| | | | SENSITIVITIES_NRI1.xls | 12/2007
| | | | | 12/2007 |
| 10 | A. Manera | PSI | TEMPLATE No.1_STST_PSI.xls
| | | | TEMPLATE No.1_TRANSIENT_PSI.xls
| | | | SENSITIVITIES_PSI.xls | 10/2007
| | | | | 10/2007 |
| 11 | A. Petruzzi | UNIPI-1 | TEMPLATE No.1_STST_UNIPI1.xls
| | F. d’Auria | | TEMPLATE No.1_TRANSIENT_UNIPI1.xls
| | | | SENSITIVITIES_UNIPI1.xls | 11/2007
| | | | | 11/2007 |
| 12 | A. Del Nevo | UNIPI-2 | TEMPLATE No.1_STST_UNIPI2.xls
| | F. d’Auria | | TEMPLATE No.1_TRANSIENT_UNIPI2.xls
| | | | SENSITIVITIES_UNIPI2.xls | 11/2007
| | | | | 12/2007 |
| 13 | F. Reventos | UPC | TEMPLATE No.1_STST_UPC.xls
| | M. Perez | | TEMPLATE No.1_TRANSIENT_UPC.xls
| | LL. Batet | | SENSITIVITIES_UPC.xls | 12/2007
| | | | | 12/2007 |

Table 1.2: List of files submitted by participants to BEMUSE phase IV
CHAPTER 2

PLANNING AND CONDUCT OF THE BEMUSE PHASE IV

2.1 Specification for the BEMUSE Phase IV

UPC, acting as coordinator of this Phase IV, proposed and prepared the input/reference database to be used by all participants. The full text of the specification is included as Appendix A.

In order to ensure the connection with Phase II and to take advantage of the lessons learned while analyzing LOFT experiment L2-5, this piece of work has been performed in collaboration with UNIFI which was the organization coordinating Phase II.

It contains the following information:

- Relap5 input deck
- Trace input deck
- Excel file with geometrical data
- Material properties
- Pump information
- Table with steady state values
- Tables for boundary and initial conditions (BIC)
- Imposed sequence of main events

2.2 ZION Nuclear power plant

Zion Station was a dual-reactor nuclear power plant operated and owned by the Commonwealth Edison network. This power generating station is located in the extreme eastern portion of the city of Zion, Lake County, Illinois. It is approximately 40 direct-line miles north of Chicago, Illinois and 42 miles south of Milwaukee, Wisconsin.

The two-unit Zion Nuclear Power Station (see figure 1, was retired in February, 1998. The 25-year old plant had not been in operation since February, 1997. In 1998 Commonwealth Edison, owner of the plant, concluded that Zion could not produce competitively priced power. At this time plans were started to keep the facility in long-term safe storage and to begin dismantlement after 2010. All nuclear fuel has been removed permanently from the reactor vessel, and the fuel has been placed in the plant’s onsite spent fuel pool.

Zion 1 main features:

- Zion, Illinois, United States
• 4 loops
• Pressurized water reactor
• Westinghouse design
• Net Output: 1040 MWe
• Thermal power 3250 MWth
• Permanently shut down.
• Date started: June 1973
• Date closed: January 1998

2.3 LB–LOCA scenario description

The scenario is a cold leg Large Break LOCA in double guillotine without HPIS. The following statements specify the scenario description:

• LPIS injection: 1.42 MPa pressure set point. Driven by a flow-pressure table (see Table A.46)
• Accumulators injection: 4.14 MPa pressure set point.
• Containment pressure imposed as a function of time after the break (see Table A.47)
• Reactor coolant pumps velocity imposed as a function of time after the break (see tables A.49, A.50)
<table>
<thead>
<tr>
<th>Event</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break</td>
<td>0.0</td>
</tr>
<tr>
<td>SCRAM</td>
<td>0.0</td>
</tr>
<tr>
<td>Reactor coolant pumps trip</td>
<td>0.0</td>
</tr>
<tr>
<td>Steam line isolation</td>
<td>10.0</td>
</tr>
<tr>
<td>Feed water isolation</td>
<td>20.0</td>
</tr>
<tr>
<td>HPIS</td>
<td>NO</td>
</tr>
</tbody>
</table>

Table 2.1: Time sequence of imposed events

- Decay power imposed by means of a reactor power multiplier as a function of time after the break (see Table A.48)

Besides this, the following tables and figures are supplied:

- Table A.46, LPIS pressure-flow curve.
- Figure A.14, LPIS.
- Table A.47, Containment pressure.
- Figure A.15, Containment pressure.
- Table A.48, Decay heat power.
- Figure A.16, Decay heat power factor.
- Table A.49, Pump velocity for primary coolant pumps in intact loops.
- Figure A.17, RCPs velocity.
- Table A.50, Pump velocity for primary coolant pumps in broken loop.

For more information see appendix A.
CHAPTER 3

COMPARISON AMONG PARTICIPANTS INPUT DECKS

The information and data summarized in this section are discussed in more detail by each participant in Appendix C

3.1 Adopted codes and nodalization resources

Table 3.1 shows the information supplied by each participant on:

- Number of hydraulic nodes;
- Number of mesh points for the heat structures;
- Number of core channels (not including the bypass channel);
- Number of axial core nodes per channel.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Code's name</th>
<th>Hydraulic nodes</th>
<th>Mesh points (heat structures)</th>
<th>Core channels (without bypass)</th>
<th>Axial active core nodes per channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEREN</td>
<td>ATHLET 2.0A</td>
<td>A20</td>
<td>580</td>
<td>1839</td>
<td>2</td>
</tr>
<tr>
<td>CEA</td>
<td>CATHARE V2.5.1 mod.1</td>
<td>C25</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>EDO</td>
<td>Tech-M-97</td>
<td>T97</td>
<td>87</td>
<td>811</td>
<td>8</td>
</tr>
<tr>
<td>GRS</td>
<td>ATHLET 2.1A</td>
<td>A21</td>
<td>398</td>
<td>526</td>
<td>2</td>
</tr>
<tr>
<td>INRAN</td>
<td>CATHARE2 V2.2.3 mod.3</td>
<td>C23</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>JNES</td>
<td>TRACE ver.4.05</td>
<td>TR4</td>
<td>743</td>
<td>16660</td>
<td>16</td>
</tr>
<tr>
<td>KAREI</td>
<td>MARS 3.1</td>
<td>M31</td>
<td>1116</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>KINS</td>
<td>RELAP5/MOD3.3</td>
<td>R5</td>
<td>252</td>
<td>2145</td>
<td>1</td>
</tr>
<tr>
<td>NRI-1</td>
<td>RELAP5/MOD3.3</td>
<td>R5</td>
<td>306</td>
<td>2055</td>
<td>4</td>
</tr>
<tr>
<td>PSI</td>
<td>TRACE5.9mod3</td>
<td>TR4</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>UNIPI-1</td>
<td>RELAP/MOD3.2</td>
<td>R5</td>
<td>286</td>
<td>2238</td>
<td>2</td>
</tr>
<tr>
<td>UNIPI-2</td>
<td>CATHARE2 V2.2.3 mod.3</td>
<td>C23</td>
<td>79</td>
<td>12017</td>
<td>5</td>
</tr>
<tr>
<td>UFC</td>
<td>RELAP5/MOD3.3</td>
<td>R5</td>
<td>305</td>
<td>2103</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3.1: Nodalization resources used by each participant.

(*) The fuel path is simulated by 10 axial nodes.
3.2 Maximum linear heat generation rates

Five active heat structures were be nodalized simulating the fuel elements. Detailed description of these five zones is given in Appendix A.

Figure 3.1 shows a sketch of core heat structures zones, listed below:

- Zone 1: average fuel rods in peripheral channels;
- Zone 2: average fuel rods in average channels;
- Zone 3: average fuel rods in hot channels;
- Zone 4: average fuel rods in hot fuel assembly;
- Zone 5: hot rod in hot fuel assembly.

Axial subdivision for output request:

- Bottom core region — From BAF to 1.22m;
- 2/3 core region — From 1.22m to 2.44m;
- Top core region — From 2.44m to TAF.

Tables 3.2 and 3.3 contain the maximum linear power (kW/m) and the corresponding axial position (m) and, where applicable, azimuthal position for zone 5 and zone 2, for the three axial subdivisions listed below.
Figure 3.1: Core heat structures
Average rod in average channel (Zone 2)

<table>
<thead>
<tr>
<th>Name</th>
<th>Maximum linear power (kW/m)</th>
<th>Elevation from BAF (m)</th>
<th>Azimuthal position</th>
<th>Maximum linear power (kW/m)</th>
<th>Elevation from BAF (m)</th>
<th>Azimuthal position</th>
<th>Maximum linear power (kW/m)</th>
<th>Elevation from BAF (m)</th>
<th>Azimuthal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEKI</td>
<td>25.2</td>
<td>2.54</td>
<td>-</td>
<td>26.99</td>
<td>1.83</td>
<td>-</td>
<td>25.46</td>
<td>1.12</td>
<td>-</td>
</tr>
<tr>
<td>CEA</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>EDO</td>
<td>24.2</td>
<td>1.745</td>
<td>NS</td>
<td>27.6</td>
<td>1.647</td>
<td>NS</td>
<td>24.7</td>
<td>0.915</td>
<td>NS</td>
</tr>
<tr>
<td>GRS</td>
<td>22.5</td>
<td>24.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRSN</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>JNES</td>
<td>25.87</td>
<td>2.484 (29/42)</td>
<td>180° against BL</td>
<td>27.53</td>
<td>1.699 (20/42)</td>
<td>180° against BL</td>
<td>26.49</td>
<td>1.176 (14/42)</td>
<td>180° against BL</td>
</tr>
<tr>
<td>KAERI</td>
<td>19.54</td>
<td>3.253</td>
<td>?</td>
<td>26.89</td>
<td>2.033</td>
<td>?</td>
<td>22.45</td>
<td>0.813</td>
<td>?</td>
</tr>
<tr>
<td>KINS</td>
<td>22.24</td>
<td>26.95</td>
<td>?</td>
<td>26.89</td>
<td>2.033</td>
<td>?</td>
<td>19.74</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>NRI-1</td>
<td>19.54</td>
<td>3.253</td>
<td>?</td>
<td>26.89</td>
<td>2.033</td>
<td>?</td>
<td>22.45</td>
<td>0.813</td>
<td>?</td>
</tr>
<tr>
<td>PSI</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>UNIPI–1</td>
<td>24.19</td>
<td>1.11</td>
<td>NS</td>
<td>26.94</td>
<td>1.73</td>
<td>NS</td>
<td>25.04</td>
<td>2.54</td>
<td>NS</td>
</tr>
<tr>
<td>UNIPI–2</td>
<td>15.95</td>
<td>3.36</td>
<td>?</td>
<td>26.71</td>
<td>2.44</td>
<td>?</td>
<td>16.7</td>
<td>0.3</td>
<td>?</td>
</tr>
<tr>
<td>UPC</td>
<td>22.23</td>
<td>2.95</td>
<td>-</td>
<td>26.94</td>
<td>1.73</td>
<td>-</td>
<td>22.45</td>
<td>0.71</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3.2: Hot rod temperatures — Zone 2

Hot rod in hot FA (Zone 5)

<table>
<thead>
<tr>
<th>Name</th>
<th>Maximum linear power (kW/m)</th>
<th>Elevation from BAF (m)</th>
<th>Azimuthal position</th>
<th>Maximum linear power (kW/m)</th>
<th>Elevation from BAF (m)</th>
<th>Azimuthal position</th>
<th>Maximum linear power (kW/m)</th>
<th>Elevation from BAF (m)</th>
<th>Azimuthal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEKI</td>
<td>37.52</td>
<td>2.54</td>
<td>-</td>
<td>40.49</td>
<td>1.83</td>
<td>-</td>
<td>38.18</td>
<td>1.12</td>
<td>-</td>
</tr>
<tr>
<td>CEA</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>EDO</td>
<td>36.5</td>
<td>1.745</td>
<td>NS</td>
<td>41.6</td>
<td>1.647</td>
<td>NS</td>
<td>37.2</td>
<td>0.915</td>
<td>NS</td>
</tr>
<tr>
<td>GRS</td>
<td>33.78</td>
<td>40.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRSN</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>JNES</td>
<td>39.73</td>
<td>2.484 (29/42)</td>
<td>90° against BL</td>
<td>41.29</td>
<td>1.699 (20/42)</td>
<td>90° against BL</td>
<td>38.81</td>
<td>1.176 (14/42)</td>
<td>90° against BL</td>
</tr>
<tr>
<td>KAERI</td>
<td>29.31</td>
<td>3.253</td>
<td>?</td>
<td>40.34</td>
<td>2.033</td>
<td>?</td>
<td>33.67</td>
<td>0.610</td>
<td>?</td>
</tr>
<tr>
<td>KINS</td>
<td>33.72</td>
<td>40.00</td>
<td>?</td>
<td>40.34</td>
<td>2.033</td>
<td>?</td>
<td>30.32</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>NRI-1</td>
<td>29.31</td>
<td>3.253</td>
<td>?</td>
<td>40.34</td>
<td>2.033</td>
<td>?</td>
<td>33.67</td>
<td>0.610</td>
<td>?</td>
</tr>
<tr>
<td>PSI</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>UNIPI–1</td>
<td>36.28</td>
<td>1.11</td>
<td>NS</td>
<td>40.42</td>
<td>1.73</td>
<td>NS</td>
<td>37.56</td>
<td>2.54</td>
<td>NS</td>
</tr>
<tr>
<td>UNIPI–2</td>
<td>23.92</td>
<td>3.36</td>
<td>?</td>
<td>40.06</td>
<td>2.44</td>
<td>?</td>
<td>25.04</td>
<td>0.3</td>
<td>?</td>
</tr>
<tr>
<td>UPC</td>
<td>33.35</td>
<td>2.95</td>
<td>-</td>
<td>40.42</td>
<td>1.73</td>
<td>-</td>
<td>33.67</td>
<td>0.71</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3.3: Hot rod temperatures — Zone 5
3.3 List of imposed sequence events and set-points

In table 3.4 the imposed events for the LB–LOCA simulation are listed.

<table>
<thead>
<tr>
<th>Event</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break</td>
<td>0.0</td>
</tr>
<tr>
<td>SCRAM</td>
<td>0.0</td>
</tr>
<tr>
<td>Reactor coolant pumps trip</td>
<td>0.0</td>
</tr>
<tr>
<td>Steam line isolation</td>
<td>10.0</td>
</tr>
<tr>
<td>Feed water isolation</td>
<td>20.0</td>
</tr>
<tr>
<td>HPIS</td>
<td>NO</td>
</tr>
</tbody>
</table>

Table 3.4: Time sequence of imposed events
CHAPTER 4

COMPARISON AND EVALUATION OF STEADY–STATE RESULTS

This chapter shows different pieces of information. In section 4.1, tables and figures related to normalized pressure drop curves are presented, while section 4.2 is devoted to nodalization development data as well as Steady-State results. Section 4.3 is a brief discussion on results achievement.

4.1 Normalized pressure drops curves along the loop

Table 4.1 contains the values of the absolute pressure versus loop length. Pressure is normalized to the hot leg inlet.

Normalized pressure versus loop length curves are depicted in Figure 4.1, where SPECS curve has been built by coordinators as participants agreed on the Paris meeting (June 2007).

![Figure 4.1: Normalized pressure curve along the loop](image-url)
	Position along the loop	SPECS 15,53	AEKI 15,49	CEA 15,63	EDO 15,50	GRS 15,51	IRSN 15,55	JNES 15,53	KAERI 15,577	KINS 15,54	NRL-1 15,54	PSI 15,61	UNIPI-1 15,50	UNIPI-2 15,54	UPC 15,53	
1	Hot leg inlet	HL IN	15,53	15,49	15,63	15,50	15,51	15,55	15,53	15,577	15,54	15,61	15,50	15,54	15,53	
2	Hot leg outlet	HL OUT	15,51	15,48	15,62	15,49	15,50	15,53	15,52	15,513	15,52	15,58	15,48	15,52	15,51	
3	Steam generator	SG IN	15,50	15,49	15,64	15,47	15,51	15,53	15,53	15,477	15,51	15,51	15,52	15,51	15,51	
4	U-tube top	UT Top	15,33	15,37	15,43	15,29	15,32	15,34	15,35	15,365	15,34	15,31	15,30	15,33	15,33	
5	Steam generator	SG OUT	15,33	15,37	15,41	15,25	15,30	15,33	15,35	15,345	15,35	15,30	15,40	15,30	15,33	
7	Bottom of loop seal	LOOP SEAL	15,28	15,34	15,38	15,27	15,26	15,30	15,29	15,304	15,29	15,25	15,37	15,24	15,29	
10	Cold leg inlet	CL IN	15,75	15,86	15,93	15,81	15,79	15,77	15,81	15,806	15,80	15,80	15,88	15,74	15,78	
12	Lower plenum (0.2m from bottom of vessel)	LP	15,81	15,74	15,85	15,71	15,75	15,84	15,82	15,726	15,83	15,83	15,81	15,79	15,81	15,83
13	Bottom of active core	BAF	15,75	15,73	15,78	15,71	15,73	15,79	15,74	15,708	15,75	15,76	15,81	15,72	15,76	15,75

Table 4.1: Absolute pressure versus loop length
4.2 Nodalization development and steady-state results

Table 4.2 shows relevant data related to nodalization development and steady-state results. Surfaces, volumes and linear power used by participants are compared in the first part of the table and steady state values in the second part.

4.3 Analysis of results

The normalized pressure drops are quite acceptable. Most of the participants manage to reproduce the reference curve. Part of the differences are due to the small changes performed by participants after the reference curve was agreed. This small changes (like those related to re-splitting the downcomer from 2 to 4 pipes in the coordinators case) produced only small deviations in the comparative plot but came up with some improvements in the reference case.

The nodalization development comparison shows agreement in the most significant parameters for scenario simulation. Discrepancies appear in some other parameters like those related to the secondary system which are not that much influent in the predicted behaviour of the transient.

The steady state results are also quite acceptable. The agreement is good except again for mass inventory in the secondary side. The agreement on upper head temperature has been treated in one of the meetings. As it can be observed 3D calculations show a temperature closer to the hot temperature while in 1D simulations it is closer to the cold one. This was considered acceptable after performing some sensitivity calculations. Other discrepancies affect only 1 or 2 out of 13 participants.

The quality of the steady state calculation results is considered sufficient to develop the transient analysis.
<table>
<thead>
<tr>
<th>No.</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m³</td>
<td>Primary circuit volume</td>
</tr>
<tr>
<td>2</td>
<td>m³</td>
<td>Secondary circuit volume</td>
</tr>
<tr>
<td>3</td>
<td>m²</td>
<td>Core heat transfer area</td>
</tr>
<tr>
<td>4</td>
<td>m²</td>
<td>SG-tube heat transfer area</td>
</tr>
<tr>
<td>5</td>
<td>m²</td>
<td>Core heat transfer area (w. tube sheet)</td>
</tr>
<tr>
<td>6</td>
<td>m³</td>
<td>SG-tube heat transfer area (w. tube sheet)</td>
</tr>
<tr>
<td>7</td>
<td>kW/m</td>
<td>Maximum of the axial power distribution for the hot rod</td>
</tr>
<tr>
<td>8</td>
<td>kW/m</td>
<td>Maximum of the axial power distribution for the hot fuel assembly</td>
</tr>
</tbody>
</table>

Steady State

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW</td>
<td>Core power</td>
</tr>
<tr>
<td>MW</td>
<td>Reactor coolant pump</td>
</tr>
<tr>
<td>MPa</td>
<td>Primary system hot leg pressure</td>
</tr>
<tr>
<td>MPa</td>
<td>Presurizer pressure (hot loop)</td>
</tr>
<tr>
<td>MPa</td>
<td>Steam generator 1 exit pressure</td>
</tr>
<tr>
<td>MPa</td>
<td>Accumulator 1 pressure</td>
</tr>
<tr>
<td>K</td>
<td>Reactor coolant temperature</td>
</tr>
<tr>
<td>K</td>
<td>Reactor coolant outlet temperature</td>
</tr>
<tr>
<td>K</td>
<td>Heat exchanger surface temperature (near vessel)</td>
</tr>
<tr>
<td>K</td>
<td>Reactor temperature (lower vessel)</td>
</tr>
<tr>
<td>K</td>
<td>Rod surface temperature (near vessel)</td>
</tr>
<tr>
<td>rpm</td>
<td>Reactor coolant pump of loop 1 velocity</td>
</tr>
<tr>
<td>kPa</td>
<td>Reactor pressure vessel pressure loss</td>
</tr>
<tr>
<td>kPa</td>
<td>Core pressure loss</td>
</tr>
<tr>
<td>kPa</td>
<td>Primary system total loop pressure loss</td>
</tr>
<tr>
<td>kPa</td>
<td>Steam generator 1 pressure loss</td>
</tr>
<tr>
<td>kg</td>
<td>Primary system total mass inventory (pressurizer, without accumulators)</td>
</tr>
<tr>
<td>kg</td>
<td>Steam generator 1 total mass inventory</td>
</tr>
<tr>
<td>kg/s</td>
<td>Primary system total core coolant mass flow</td>
</tr>
<tr>
<td>kg/s</td>
<td>Steam generator 1 core coolant mass flow</td>
</tr>
<tr>
<td>kg/s</td>
<td>Core bypass mass flow (LP, UP)</td>
</tr>
<tr>
<td>m</td>
<td>Presurizer level (collapsed)</td>
</tr>
<tr>
<td>m</td>
<td>Secondary side-downcomer level</td>
</tr>
</tbody>
</table>

Table 4.2: Steady state relevant values
CHAPTER 5

COMPARISON AND EVALUATION OF REFERENCE RESULTS

This Chapter shows the information detailed hereafter: section 5.1 shows a table with the calculated sequence of events, section 5.2 shows the time trends, in section 5.3 the most Relevant Thermalhydraulic Aspects (RTA) are shown and, finally, section 5.4 shows some comments on the tables presented in this Chapter in order to enlight similarities and discrepancies found among the different groups.

5.1 Table of resulting sequence of main events

Table 5.1 is the list of the most relevant events along with their occurrence time calculated for the simulated LB-LOCA scenario by all participants.

5.2 Selected time trends

Table 5.2 is a list of the twenty five selected time trends. Although the most relevant information on transient behaviour can be derived from a more limited number of time trends, the purpose of the provided set of figures is to allow participants to understand their own deviations for their future activities.
<table>
<thead>
<tr>
<th>EVENTS</th>
<th>AEKI</th>
<th>CEA</th>
<th>EDO</th>
<th>GRS</th>
<th>IRSN</th>
<th>JNES</th>
<th>KAERI</th>
<th>KINS</th>
<th>NRI-1</th>
<th>PSI</th>
<th>UNIPI-1</th>
<th>UNIPI-2</th>
<th>UPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break initiation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Reactor scrammed</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>DNB in core</td>
<td>0.75</td>
<td>0.48</td>
<td>0.184</td>
<td>0.15</td>
<td>0.25</td>
<td>0.800</td>
<td>-</td>
<td>0.4</td>
<td>0.19</td>
<td>0.1</td>
<td>0.12</td>
<td>0.22</td>
<td>0.11</td>
</tr>
<tr>
<td>Primary coolant pumps tripped</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Partial top-down rewet initiated (1)</td>
<td>10.6</td>
<td>10</td>
<td>6.5</td>
<td>3.9</td>
<td>11.00</td>
<td>68.004</td>
<td>5</td>
<td>3.7</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>3.70</td>
</tr>
<tr>
<td>Reactor scrammed</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Pressurizer emptied</td>
<td>12.7</td>
<td>9.85</td>
<td>18.6</td>
<td>11.2</td>
<td>10.00</td>
<td>19.103</td>
<td>13</td>
<td>17</td>
<td>12</td>
<td>40</td>
<td>11.9</td>
<td>9.84</td>
<td>10.21</td>
</tr>
<tr>
<td>Accumulator 1 injection initiated</td>
<td>14.8</td>
<td>12.9</td>
<td>11.78</td>
<td>13.1</td>
<td>15.00</td>
<td>11.785</td>
<td>17</td>
<td>16.2</td>
<td>15</td>
<td>12.4</td>
<td>12.1</td>
<td>15.1</td>
<td>15.12</td>
</tr>
<tr>
<td>Partial top-down rewet ended (1)</td>
<td>14.7</td>
<td>15</td>
<td>26</td>
<td>13.5</td>
<td>17.00</td>
<td>369.140</td>
<td>7</td>
<td>5.1</td>
<td>19</td>
<td>6.5</td>
<td>18.1</td>
<td>9.14</td>
<td>5.30</td>
</tr>
<tr>
<td>Maximum cladding temperature reached</td>
<td>54.5</td>
<td>8.8</td>
<td>40.04</td>
<td>3.8</td>
<td>1263.51</td>
<td>4.001</td>
<td>45</td>
<td>36.6</td>
<td>11</td>
<td>42.77</td>
<td>47.3</td>
<td>1220</td>
<td>46.22</td>
</tr>
<tr>
<td>LPIS 1 injection initiated</td>
<td>19.8</td>
<td>19</td>
<td>19.8</td>
<td>18.3</td>
<td>21.25</td>
<td>23.903</td>
<td>24</td>
<td>22.9</td>
<td>21.8</td>
<td>18.17</td>
<td>22.5</td>
<td>22.17</td>
<td>22.26</td>
</tr>
<tr>
<td>Accumulator emptied</td>
<td>65.2</td>
<td>56.8</td>
<td>59.9</td>
<td>61</td>
<td>63.00</td>
<td>98.041</td>
<td>81</td>
<td>80.1</td>
<td>79</td>
<td>96.65</td>
<td>80.1</td>
<td>70.34</td>
<td>78.87</td>
</tr>
<tr>
<td>Core cladding fully quenched</td>
<td>238.3</td>
<td>394</td>
<td>136.1</td>
<td>257</td>
<td>325.00</td>
<td>369.140</td>
<td>205</td>
<td>171.7</td>
<td>162</td>
<td>199.6</td>
<td>261.5</td>
<td>324</td>
<td>205.01</td>
</tr>
</tbody>
</table>

Table 5.1: Resulting time sequence of events
<table>
<thead>
<tr>
<th>No</th>
<th>Parameter</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intact loop pressure in hot leg</td>
<td>Fig. 5.1</td>
</tr>
<tr>
<td>2</td>
<td>Broken loop pressure in hot leg</td>
<td>Fig. 5.2</td>
</tr>
<tr>
<td>3</td>
<td>Broken loop pressure in cold leg</td>
<td>Fig. 5.3</td>
</tr>
<tr>
<td>4</td>
<td>SG pressure — Secondary Side</td>
<td>Fig. 5.4</td>
</tr>
<tr>
<td>5</td>
<td>Accumulator 1 pressure</td>
<td>Fig. 5.5</td>
</tr>
<tr>
<td>6</td>
<td>Lower plenum liquid temperature</td>
<td>Fig. 5.6</td>
</tr>
<tr>
<td>7</td>
<td>Lower plenum vapor temperature</td>
<td>Fig. 5.7</td>
</tr>
<tr>
<td>8</td>
<td>Upper head temperature</td>
<td>Fig. 5.8</td>
</tr>
<tr>
<td>9</td>
<td>Intact loop hot leg liquid temperature</td>
<td>Fig. 5.9</td>
</tr>
<tr>
<td>10</td>
<td>Intact loop hot leg vapor temperature</td>
<td>Fig. 5.10</td>
</tr>
<tr>
<td>11</td>
<td>Break flow rate in broken loop cold leg</td>
<td>Fig. 5.11</td>
</tr>
<tr>
<td>12</td>
<td>Break flow rate in broken loop hot leg</td>
<td>Fig. 5.12</td>
</tr>
<tr>
<td>13</td>
<td>Integral break flow</td>
<td>Fig. 5.13</td>
</tr>
<tr>
<td>14</td>
<td>ECCS integral flow</td>
<td>Fig. 5.14</td>
</tr>
<tr>
<td>15</td>
<td>Primary side total mass (with pressurizer)</td>
<td>Fig. 5.15</td>
</tr>
<tr>
<td>16</td>
<td>Steam generator 1 pressure drop</td>
<td>Fig. 5.16</td>
</tr>
<tr>
<td>17</td>
<td>Primary pumps pressure drop</td>
<td>Fig. 5.17</td>
</tr>
<tr>
<td>18</td>
<td>Zone 5 — Bottom level temperature</td>
<td>Fig. 5.18</td>
</tr>
<tr>
<td>19</td>
<td>Zone 5 — 2/3 Core height temperature</td>
<td>Fig. 5.19</td>
</tr>
<tr>
<td>20</td>
<td>Zone 5 — Top level temperature</td>
<td>Fig. 5.20</td>
</tr>
<tr>
<td>21</td>
<td>Zone 2 — Bottom level temperature</td>
<td>Fig. 5.21</td>
</tr>
<tr>
<td>22</td>
<td>Zone 2 — 2/3 Core height temperature</td>
<td>Fig. 5.22</td>
</tr>
<tr>
<td>23</td>
<td>Zone 2 — Top level temperature</td>
<td>Fig. 5.23</td>
</tr>
<tr>
<td>24</td>
<td>Maximum cladding temperature</td>
<td>Fig. 5.24</td>
</tr>
<tr>
<td>25</td>
<td>Hot rod fuel centerline temperature at 1.6 - 1.8 m</td>
<td>Fig. 5.25</td>
</tr>
</tbody>
</table>

Table 5.2: List of time trends
Intact loop hot leg pressure.

![Graph](image)

Figure 5.1: Time trends of intact loop 1 pressure in hot leg

Broken loop - reactor vessel side - pressure.

![Graph](image)

Figure 5.2: Time trends of broken loop pressure in hot leg
Figure 5.3: Time trends of broken loop pressure in cold leg

Figure 5.4: Time trends of steam generator 1 secondary side pressure
Figure 5.5: Time trends of accumulator 1 pressure

Figure 5.6: Time trends of lower plenum liquid temperature
Lower plenum vapor temperature.

![Lower plenum vapor temperature graph]

Figure 5.7: Time trends of lower plenum vapor temperature

Upper head temperature.

![Upper head temperature graph]

Figure 5.8: Time trends upper head liquid temperature
Figure 5.9: Time trends of intact loop hot leg liquid temperature

Figure 5.10: Time trends of intact loop hot leg vapor temperature
Figure 5.11: Time trends of broken loop mass flow in cold leg

Figure 5.12: Time trends of broken loop mass flow in hot leg
Figure 5.13: Time trends of integral break mass flow

Figure 5.14: Time trends of ECCS integral mass flow
Figure 5.15: Time trends of primary system mass (including pressurizer)

![Primary side mass graph](image)

Figure 5.16: Time trends of pressure drop in steam generator 1 (absolute value)

![Steam generator 1 pressure drop graph](image)
Reactor coolant pump 1 pressure drop (absolute value).

Figure 5.17: Time trends of reactor coolant pump 1 pressure drop (absolute value)

Zone 5. Cladding surface temperature at 0.4 - 0.6 m.

Figure 5.18: Time trends of cladding temperature of hot rod in hot fuel assembly (zone 5) — bottom level
Zone 5. Cladding surface temperature at 1.6 - 1.8 m.

Figure 5.19: Time trends of cladding temperature of hot rod in hot fuel assembly (zone 5) — 2/3 level

Zone 5. Cladding surface temperature at 2.8 - 3 m.

Figure 5.20: Time trends of cladding temperature of hot rod in hot fuel assembly (zone 5) — top level
Figure 5.21: Time trends of cladding temperature of average rod in average channel (zone 2) — bottom level

Figure 5.22: Time trends of cladding temperature of average rod in average channel (zone 2) — 2/3 level
Figure 5.23: Time trends of cladding temperature of average rod in average channel (zone 2) — top level

Figure 5.24: Time trends of maximum cladding temperature
Hot rod fuel centerline temperature at 1.6 - 1.8 m.

Figure 5.25: Time trends of hot fuel centerline temperature at 1.6 - 1.8 m. — top level
5.3 Relevant thermal-hydraulic aspects (RTA)

As done also in BEMUSE Phase II, Table 5.3 shows a number of Relevant Thermal-hydraulic Aspects (RTA) selected for the scenario. The selected RTAs are the following:

- Break flow rate behaviour
- Pressurizer behaviour
- Dry-out occurrence
- Upper plenum pressure behaviour
- Accumulator behaviour
- LPIS behaviour
- Accumulator plus LPIS behaviour
- Primary mass (with pressurizer) behaviour

5.4 Analysis of the reference results

The goal of this section is to establish some comments on similarities and discrepancies found among the different results provided.

As said in section 1.1, the selection of the plant has been quite an important issue that has had some impact on Phase IV development. Nevertheless, Phase IV results are a useful outcome for the general goals of the phase. On the one hand, they allow the group to face Phase V and, on the other hand, they are an important database suitable to enlight subjects needed of detailed definition. When BEMUSE participants made the decision of using Zion plant and CSNI approved the choice, the group was aware of advantages and difficulties that may appear. After completing Phase IV, the group has some evidence of the previous suspicion. The advantages are there: quantitative comparisons, plots and tables have been produced and have provided useful information on the transient phenomena. The difficulties, mainly related to the lack of detailed data on Zion Station, are also there: quite an important effort has been needed to carry out the reference case calculation.

Most of the items listed in Table 5.1 are strongly dependent on primary pressure time trend. Despite of the dispersion shown in Figures 5.2 and 5.3, some events are predicted in a consistent way by participants among these:

- Subcooled blowdown ended
- Cladding temperature initially deviated from saturation (DNB in core)
- Pressurizer emptied
- Accumulator injection initiated
- LPIS injection initiated
Events related to the partial top-down rewet need some explanation. After analyzing Figures 5.18 to 5.24, despite of a non-negligible dispersion, the shape of the curves shows some consistency. All participants predict a first PCT, a temperature decrease (at the initiation of the partial rewet) and a further temperature increase (at the end of the partial rewet). These events are not so clearly shown in Table 5.1 when participants are asked to define a time quantity related to each event but there is a general agreement on the shape of the curves. Clearly the time trend analysis (instead of the simple comparison of the time of occurrence of the events) is the best way to show the discrepancies and similarities among results.

A similar comment can be made regarding accumulator behaviour. Despite injection initiation is consistently predicted by participants and properly shown in both Table 5.1 and Figure 5.5, the prediction of accumulators emptying shows some dispersion. As it is a phenomenon depending on intact leg pressure, pressure error and cumulative time error have a strong effect on the occurrence of the event and dispersion increases.

Finally, the core thermal behaviour, and mainly the full quench, is another event needed of some clarification. Figure 5.24 is maybe the best information for discussion that has some comments involving code effect. The spread of results for the first PCT and for the second is not so high (roughly 200 K for each peak). The lowest of PCT have been obtained by KAERI (1159.1 K) and highest of PCT by EDO "GIDROPRESS" (1326.15 K). Difference between lowest and highest of PCT for RELAP users is about 100 K, for CATHARE and ATHLET users is about 40 K, and for TRACE users is 20 K. Eight participants predicted the time of PCT between 40 s and 60 s except for NRI-1, CEA, GRS, JNES and IRSN. These participants predicted more early the time of PCT (about 10 s). Ten participants predicted the time of PCT between 40 s and 60 s except for NRI-1, CEA and IRSN. NRI-1, CEA and IRSN predicted more early the time of PCT (about 10 s). The major differences between results come with the reflooding behaviour and mainly its duration. Concerning this aspect, among the 13 participants, 8 of them show a medium reflood duration (total core quench obtained between 160 and 250 s), 3 other computations show a long reflood duration (total core quench between 320 to 420 s) and the other 2 show a kind of slow cladding temperature decrease in which it is difficult to establish the time of full quench.

The group of 8 is mainly composed by users of codes like Relap5 or codes having an origin related or at least "not far" from Relap5 development (TRACE and MARS). The group of 3 is completely composed by CATHARE users. Since by now there are only two ATHLET users, no special group is considered for ATHLET users. The results of these participants (GRS, AEKI) are plotted among those of the group of 8.

As all the codes have their own complete consistent qualification process in which reflood tests are considered, and after taking into account the comments of participants (see Appendix C: Codes and Input decks), it is the coordinators opinion that the point cannot be treated as a simple user effect but as a code effect.

Another statement reinforces this point. The overall behaviour of all the calculations is rather similar as long as the pressure (Figures 5.1 to 5.5 and 5.16 to 5.17) and the mass inventory (Figures 5.11 to 5.15) are considered and most of the dispersion appears when the final reflood is predicted.

According to Relevant Thermal-hydraulic Aspects (RTA) selected for the scenario, Table 5.3 corroborates what has been said before. The spread in items like pressurizer behaviour or RTA related to pressure and mass (break, accumulator and LPIS) is not so high, while in others like dry-out occurrence (and mainly its duration) it becomes more significant.

Temperature curves in figures 5.6, 5.7, 5.9 and 5.10, obtained with using TECH-M-97 code, are the same curves. TECH-M-97 is a thermodynamic equilibrium code. Fluid and vapor in each volume is in equilibrium state. The coolant temperature is determined by mass and enthalpy of water and steam in each node and corresponds to the coolant state at respective time moment (water,
steam-water mixture, steam).

Temperature curve in figure 5.8, obtained with using TECH-M-97 code, is not upper head liquid temperature. It is coolant temperature in the calculated cell 76 (see Appendix C) at respective time moment and is determined by mass and enthalpy of water and steam in it (See also comment to Figures 5.6, 5.7, 5.9 and 5.10).

Today difference between the highest and the lowest prediction of maximum PCT is about 170 K (EDO "GIDROPRESS" (1326.15 K) and KAERI (1159.1 K)).
<table>
<thead>
<tr>
<th>RTAs</th>
<th>UNIT</th>
<th>AEKI</th>
<th>CEA</th>
<th>EDO</th>
<th>GRS</th>
<th>IRSN</th>
<th>JNES</th>
<th>KAERI</th>
<th>KINS</th>
<th>NRI-1</th>
<th>PSI</th>
<th>UNIPI-1</th>
<th>UNIPI-2</th>
<th>UPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td></td>
</tr>
<tr>
<td>1-2-5 initiated</td>
<td>s</td>
<td>0.00</td>
</tr>
<tr>
<td>Break flowrate behaviour</td>
<td></td>
</tr>
<tr>
<td>Integral break flowrate at dryout time</td>
<td>kg</td>
<td>29000.00</td>
<td>13700.00</td>
<td>6920.00</td>
<td>3600.00</td>
<td>7022.11</td>
<td>29008.45</td>
<td>17306.10</td>
<td>10382.62</td>
<td>5956.00</td>
<td>1818.68</td>
<td>3720.00</td>
<td>5828.00</td>
<td>2072.34</td>
</tr>
<tr>
<td>Integral break flowrate at ACC injection time</td>
<td>kg</td>
<td>205582.00</td>
<td>204700.00</td>
<td>198300.00</td>
<td>201400.00</td>
<td>204395.05</td>
<td>178847.73</td>
<td>210126.00</td>
<td>209289.64</td>
<td>209544.00</td>
<td>307533.00</td>
<td>334074.00</td>
<td>279743.91</td>
<td></td>
</tr>
<tr>
<td>Integral break flowrate at core quenching time</td>
<td>kg</td>
<td>343000.00</td>
<td>373600.00</td>
<td>365600.00</td>
<td>366200.00</td>
<td>364272.04</td>
<td>358344.75</td>
<td>335946.00</td>
<td>372601.91</td>
<td>369995.00</td>
<td>352064.00</td>
<td>354818.00</td>
<td>372936.00</td>
<td>406480.50</td>
</tr>
<tr>
<td>Pressurizer behaviour</td>
<td></td>
</tr>
<tr>
<td>Time of emptying (level below 0.1 m)</td>
<td>s</td>
<td>12.70</td>
<td>9.85</td>
<td>17.19</td>
<td>11.20</td>
<td>11.00</td>
<td>19.10</td>
<td>13.00</td>
<td>17.00</td>
<td>12.00</td>
<td>40.00</td>
<td>11.90</td>
<td>9.84</td>
<td>10.21</td>
</tr>
<tr>
<td>PRZ pressure/Prim. pressure at 5 s</td>
<td>s</td>
<td>1.68</td>
<td>1.57</td>
<td>1.68</td>
<td>1.61</td>
<td>1.54</td>
<td>1.66</td>
<td>1.22/8.22</td>
<td>1.53</td>
<td>1.56</td>
<td>1.56</td>
<td>1.54</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>PRZ pressure/Prim. pressure at 10 s</td>
<td>s</td>
<td>1.69</td>
<td>1.31</td>
<td>2.49</td>
<td>1.70</td>
<td>1.29</td>
<td>1.91</td>
<td>9.34/6.49</td>
<td>1.43</td>
<td>1.47</td>
<td>1.45</td>
<td>1.43</td>
<td>1.11</td>
<td>1.26</td>
</tr>
<tr>
<td>PRZ pressure/Prim. pressure at 15 s</td>
<td>s</td>
<td>1.69</td>
<td>1.33</td>
<td>5.39</td>
<td>1.72</td>
<td>1.17</td>
<td>1.62</td>
<td>7.17/5.41</td>
<td>1.11</td>
<td>1.36</td>
<td>1.07</td>
<td>1.33</td>
<td>1.13</td>
<td>1.23</td>
</tr>
<tr>
<td>Time of PRZ-Prim. pressure equalization</td>
<td>s</td>
<td>31.20</td>
<td>28.00</td>
<td>47.00</td>
<td>28.00</td>
<td>34.00</td>
<td>41.00</td>
<td>37.00</td>
<td>38.40</td>
<td>34.00</td>
<td>40.00</td>
<td>35.11</td>
<td>35.10</td>
<td>34.00</td>
</tr>
<tr>
<td>Dryout occurrence</td>
<td></td>
</tr>
<tr>
<td>DNB in core</td>
<td>s</td>
<td>0.75</td>
<td>0.48</td>
<td>0.18</td>
<td>0.15</td>
<td>0.25</td>
<td>0.90</td>
<td>-</td>
<td>0.40</td>
<td>0.19</td>
<td>0.10</td>
<td>0.12</td>
<td>0.22</td>
<td>0.11</td>
</tr>
<tr>
<td>Peak cladding temperature reached</td>
<td>s</td>
<td>54.50</td>
<td>8.80</td>
<td>13.23 / 10.04*</td>
<td>3.90</td>
<td>12.00</td>
<td>4.00</td>
<td>45.00</td>
<td>36.60</td>
<td>11.00</td>
<td>42.77</td>
<td>47.39</td>
<td>42.99</td>
<td>46.23</td>
</tr>
<tr>
<td>Core cladding fully quenched</td>
<td>s</td>
<td>122.70</td>
<td>129.95</td>
<td>132.15</td>
<td>118.00</td>
<td>126.31</td>
<td>1184.58</td>
<td>1159.10</td>
<td>1302.38</td>
<td>1205.50</td>
<td>1297.88</td>
<td>1209.46</td>
<td>1220.00</td>
<td>1212.43</td>
</tr>
<tr>
<td>Upper Plenum pressure behaviour</td>
<td></td>
</tr>
<tr>
<td>Pressure at dry out time</td>
<td>MPa</td>
<td>11.35</td>
<td>11.66</td>
<td>12.33</td>
<td>13.00</td>
<td>15.59</td>
<td>11.60</td>
<td>12.07</td>
<td>11.83</td>
<td>11.89</td>
<td>12.95</td>
<td>11.78</td>
<td>11.35</td>
<td>11.89</td>
</tr>
<tr>
<td>Pressure at 10 s</td>
<td>MPa</td>
<td>5.82</td>
<td>5.40</td>
<td>5.11</td>
<td>5.46</td>
<td>6.42</td>
<td>4.94</td>
<td>6.49</td>
<td>6.36</td>
<td>6.19</td>
<td>5.35</td>
<td>6.37</td>
<td>6.56</td>
<td>6.15</td>
</tr>
</tbody>
</table>

Table 5.3: RTA — Comparison among participants
Upper Plenum pressure behaviour

<table>
<thead>
<tr>
<th>RTAs</th>
<th>UNIT</th>
<th>AERI</th>
<th>CEA</th>
<th>EDO</th>
<th>GRS</th>
<th>IRSN</th>
<th>JNES</th>
<th>KAERI</th>
<th>KINS</th>
<th>NRI-1</th>
<th>PSI</th>
<th>UNIPI-1</th>
<th>UNIPI-2</th>
<th>UPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure at 20 s</td>
<td>MPa</td>
<td>1.35</td>
<td>0.97</td>
<td>1.35</td>
<td>0.95</td>
<td>1.86</td>
<td>1.97</td>
<td>2.29</td>
<td>2.37</td>
<td>1.97</td>
<td>0.98</td>
<td>2.43</td>
<td>2.31</td>
<td>2.10</td>
</tr>
<tr>
<td>Pressure at core quenching time</td>
<td>MPa</td>
<td>0.23</td>
<td>0.24</td>
<td>0.28</td>
<td>0.23</td>
<td>0.29</td>
<td>0.22</td>
<td>0.24</td>
<td>0.24</td>
<td>0.28</td>
<td>0.24</td>
<td>0.22</td>
<td>0.27</td>
<td>0.26</td>
</tr>
<tr>
<td>Pressure at 500 s</td>
<td>MPa</td>
<td>0.23</td>
<td>0.21</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.25</td>
<td>0.25</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.22</td>
<td>0.27</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Accumulator 1 behaviour

<table>
<thead>
<tr>
<th>RTAs</th>
<th>UNIT</th>
<th>AERI</th>
<th>CEA</th>
<th>EDO</th>
<th>GRS</th>
<th>IRSN</th>
<th>JNES</th>
<th>KAERI</th>
<th>KINS</th>
<th>NRI-1</th>
<th>PSI</th>
<th>UNIPI-1</th>
<th>UNIPI-2</th>
<th>UPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC1 intervention time</td>
<td>s</td>
<td>14.90</td>
<td>12.90</td>
<td>11.78</td>
<td>13.10</td>
<td>15.00</td>
<td>11.79</td>
<td>17.00</td>
<td>16.20</td>
<td>15.00</td>
<td>12.40</td>
<td>12.10</td>
<td>15.10</td>
<td>15.12</td>
</tr>
<tr>
<td>ACC1 Pressure 10 s after injection initiation</td>
<td>MPa</td>
<td>2.77</td>
<td>2.77</td>
<td>2.84</td>
<td>2.78</td>
<td>2.77</td>
<td>3.32</td>
<td>3.01</td>
<td>4.14</td>
<td>3.12</td>
<td>3.18</td>
<td>4.14</td>
<td>4.14</td>
<td>4.14</td>
</tr>
<tr>
<td>ACC1 Pressure 20 s after injection initiation</td>
<td>MPa</td>
<td>1.96</td>
<td>1.93</td>
<td>1.98</td>
<td>1.97</td>
<td>1.89</td>
<td>2.63</td>
<td>2.26</td>
<td>3.81</td>
<td>2.50</td>
<td>3.62</td>
<td>3.74</td>
<td>2.31</td>
<td></td>
</tr>
<tr>
<td>ACC1 Pressure at core quenching time</td>
<td>MPa</td>
<td>1.12</td>
<td>1.19</td>
<td>1.12</td>
<td>1.13</td>
<td>1.07</td>
<td>1.12</td>
<td>1.48</td>
<td>n/a</td>
<td>0.78</td>
<td>1.54</td>
<td>1.18</td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td>Integral ACC1 flowrate at 500 s</td>
<td>kg</td>
<td>23412.00</td>
<td>22480.00</td>
<td>69000.00</td>
<td>23590.00</td>
<td>23229.50</td>
<td>23619.10</td>
<td>23275.00</td>
<td>23278.81</td>
<td>23274.00</td>
<td>23566.00</td>
<td>23274.00</td>
<td>69522.00</td>
<td>23278.65</td>
</tr>
<tr>
<td>ACC1 emptied</td>
<td>s</td>
<td>66.20</td>
<td>56.80</td>
<td>59.14</td>
<td>61.00</td>
<td>66.00</td>
<td>98.04</td>
<td>81.00</td>
<td>80.10</td>
<td>79.00</td>
<td>96.65</td>
<td>80.10</td>
<td>70.44</td>
<td>78.87</td>
</tr>
</tbody>
</table>

LPIS1 - behaviour

<table>
<thead>
<tr>
<th>RTAs</th>
<th>UNIT</th>
<th>AERI</th>
<th>CEA</th>
<th>EDO</th>
<th>GRS</th>
<th>IRSN</th>
<th>JNES</th>
<th>KAERI</th>
<th>KINS</th>
<th>NRI-1</th>
<th>PSI</th>
<th>UNIPI-1</th>
<th>UNIPI-2</th>
<th>UPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPIS flowrate at core quenching time</td>
<td>kg/s</td>
<td>88.00</td>
<td>88.00</td>
<td>263.70</td>
<td>88.00</td>
<td>88.00</td>
<td>88.00</td>
<td>88.00</td>
<td>88.00</td>
<td>88.00</td>
<td>88.00</td>
<td>88.00</td>
<td>88.00</td>
<td></td>
</tr>
<tr>
<td>Integral LPIS flowrate at 500 s</td>
<td>kg</td>
<td>19177.00</td>
<td>33040.00</td>
<td>30340.00</td>
<td>21000.00</td>
<td>26677.55</td>
<td>30389.66</td>
<td>15911.00</td>
<td>13013.13</td>
<td>12274.00</td>
<td>15898.00</td>
<td>20972.00</td>
<td>78907.00</td>
<td>16016.11</td>
</tr>
<tr>
<td>Integral LPIS flowrate at core quenching time</td>
<td>kg</td>
<td>7003.00</td>
<td>42330.00</td>
<td>30340.00</td>
<td>21000.00</td>
<td>26677.55</td>
<td>30389.66</td>
<td>15911.00</td>
<td>13013.13</td>
<td>12274.00</td>
<td>15898.00</td>
<td>20972.00</td>
<td>78907.00</td>
<td>16016.11</td>
</tr>
</tbody>
</table>

ECCS behaviour

<table>
<thead>
<tr>
<th>RTAs</th>
<th>UNIT</th>
<th>AERI</th>
<th>CEA</th>
<th>EDO</th>
<th>GRS</th>
<th>IRSN</th>
<th>JNES</th>
<th>KAERI</th>
<th>KINS</th>
<th>NRI-1</th>
<th>PSI</th>
<th>UNIPI-1</th>
<th>UNIPI-2</th>
<th>UPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total integral ECCS flowrate at core quenching time</td>
<td>kg</td>
<td>127769.00</td>
<td>166560.00</td>
<td>93440.00</td>
<td>132200.00</td>
<td>149710.00</td>
<td>162022.15</td>
<td>117558.00</td>
<td>146833.57</td>
<td>109883.57</td>
<td>105644.00</td>
<td>118098.00</td>
<td>92874.00</td>
<td>132869.00</td>
</tr>
<tr>
<td>Total integral ECCS flowrate at 500 s</td>
<td>kg</td>
<td>199840.00</td>
<td>194430.00</td>
<td>195200.00</td>
<td>196500.00</td>
<td>195419.99</td>
<td>196031.00</td>
<td>195520.00</td>
<td>197643.00</td>
<td>197643.00</td>
<td>197643.00</td>
<td>197643.00</td>
<td>197643.00</td>
<td>197643.00</td>
</tr>
</tbody>
</table>

Primary System Mass (with pressurizer) behaviour

<table>
<thead>
<tr>
<th>RTAs</th>
<th>UNIT</th>
<th>AERI</th>
<th>CEA</th>
<th>EDO</th>
<th>GRS</th>
<th>IRSN</th>
<th>JNES</th>
<th>KAERI</th>
<th>KINS</th>
<th>NRI-1</th>
<th>PSI</th>
<th>UNIPI-1</th>
<th>UNIPI-2</th>
<th>UPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum mass / initial mass</td>
<td>kg</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>0.13</td>
<td>0.05</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.06</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Primary mass/initial mass at core quenching time</td>
<td>kg</td>
<td>0.25</td>
<td>0.23</td>
<td>0.17</td>
<td>0.22</td>
<td>0.24</td>
<td>0.26</td>
<td>0.26</td>
<td>0.24</td>
<td>0.24</td>
<td>0.26</td>
<td>0.30</td>
<td>0.31</td>
<td>0.23</td>
</tr>
<tr>
<td>Primary mass/initial mass at 500 s</td>
<td>kg</td>
<td>0.26</td>
<td>0.23</td>
<td>0.22</td>
<td>0.25</td>
<td>0.27</td>
<td>0.28</td>
<td>0.28</td>
<td>0.24</td>
<td>0.26</td>
<td>0.30</td>
<td>0.31</td>
<td>0.23</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table: 5.3 continued
CHAPTER 6

COMPARISON AND EVALUATION
OF SENSITIVITY RESULTS

Following the guidelines of previous Phase II, a number of sensitivity calculations were proposed and agreed by participants in Phase IV during a meeting held in Paris (June 2007). It was also agreed in the meeting that the variations of the analyzed parameters had to be defined as realistically as possible (see Appendix B).

The information supplied to the participants in this phase can be found in Appendixes A (reference case) and B (sensitivities). The contribution of each participant can be found in Appendix F.

6.1 Purpose and framework of the study

Ten parameters have been chosen for analysis, which are listed in Table 6.1, along with their respective ranges of variation. Those ranges, as it has been mentioned, have been defined in such a way that a realistic span of values is used in the calculations.

<table>
<thead>
<tr>
<th>No</th>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fuel conductivity (for all fuel rods)</td>
<td>value_{BC} - 0.4 W/m-K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value_{BC} + 0.4 W/m-K</td>
</tr>
<tr>
<td>2</td>
<td>Gap conductivity (for all fuel rods)</td>
<td>value_{BC}×0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value_{BC}×1.2</td>
</tr>
<tr>
<td>3</td>
<td>Power after scram</td>
<td>value_{BC} - 8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see Table B.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value_{BC} + 8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see Table B.3</td>
</tr>
<tr>
<td>4</td>
<td>Power before scram</td>
<td>value_{BC} - 3.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value_{BC} + 3.3%</td>
</tr>
<tr>
<td>5</td>
<td>Hot rod power (whole rod, same axial shape)</td>
<td>value_{BC} - 7.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value_{BC} + 7.6%</td>
</tr>
<tr>
<td>6</td>
<td>LPIS delay (3/3)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value_{BC} + 30 sec</td>
</tr>
<tr>
<td>7</td>
<td>Accumulator liquid volume (3/3)</td>
<td>value_{BC} - 33 ft³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value_{BC} + 33 ft³</td>
</tr>
<tr>
<td>8</td>
<td>Accumulator pressure (3/3)</td>
<td>value_{BC} - 100 psig</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value_{BC} + 100 psig</td>
</tr>
<tr>
<td>9</td>
<td>Containment pressure</td>
<td>see Table A.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Hot/cold conditions for pellet radius</td>
<td>see Table A.17</td>
</tr>
<tr>
<td></td>
<td>(for all fuel rods)</td>
<td>-</td>
</tr>
</tbody>
</table>

where BC stands for Base Case, and (3/3) means the 3 safety injection systems

| Table 6.1: Sensitivity parameters |
Table 6.2 lists participants’ contributions to sensitivity analysis.

<table>
<thead>
<tr>
<th>Organization</th>
<th>1 lr</th>
<th>1 ur</th>
<th>2 lr</th>
<th>2 ur</th>
<th>3 lr</th>
<th>3 ur</th>
<th>4 lr</th>
<th>4 ur</th>
<th>5 lr</th>
<th>5 ur</th>
<th>6</th>
<th>7 lr</th>
<th>7 ur</th>
<th>8 lr</th>
<th>8 ur</th>
<th>9</th>
<th>10 lr</th>
<th>10 ur</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEKI</td>
<td>NP</td>
<td>X</td>
</tr>
<tr>
<td>CEA</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>EDO</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>GRS</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>IRSN</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>JNES</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>KAERI</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>KINS</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>NRI-1</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>PSI</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>UNIPI-1</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>UNIPI-2</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>UPC</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

ur: upper range lr: lower range NP: not performed

Table 6.2: Sensitivity cases calculated by participants

The impact of the different parameters on PCT and on time of core quenching is analyzed and the results for the participants are compared.

For each sensitivity calculation, time trends for the following variables, obtained by the participants, are compared:

- the primary pressure;
- the primary system mass inventory;
- the cladding temperature of hot rod at 2/3 height.

6.2 Time trends obtained in the calculations

In what follows, the time trends for some selected variables are compared among the different participants. In order to have a reference point, Figures 6.1, 6.2 and 6.3 show the evolution of the Upper head pressure, the Primary circuit mass inventory, and the Hot rod surface temperature at 2/3 height (referred to in the plots simply as ”Rod surface temperature”).

Next, results obtained changing the chosen input parameters are compared:

- Sensitivity No 1 (Fuel conductivity). Figures 6.4 to 6.6 show the time trends for the selected output variables (primary pressure, primary mass inventory, and hot rod cladding temperature), respectively, when the fuel conductivity takes its higher and its lower values.
- Sensitivity No 2 (Gap conductivity). Figures 6.7 to 6.9 show the time trends for the three selected output variables, respectively, when the gap conductivity takes its higher and its lower values.
Sensitivity No 3 (Decay power). Figures 6.10 to 6.12 show the time trends for the three selected output variables, respectively, when the decay power takes its higher and its lower values.

Sensitivity No 4 (Initial power). Figures 6.13 to 6.15 show the time trends for the three selected output variables, respectively, when the steady state power takes its higher and its lower values.

Sensitivity No 5 (Maximum linear power). Figures 6.16 to 6.18 show the time trends for the three selected output variables, respectively, when the maximum linear power takes its higher and its lower values.
• Sensitivity No 6 (LPIS delay). Figures 6.19 to 6.21 show the time trends for the three selected output variables, respectively, when the LPIS start up is delayed compared to the base case.

• Sensitivity No 7 (Accumulator liquid volume). Figures 6.22 to 6.24 show the time trends for the three selected output variables, respectively, when the accumulator liquid volume is at its higher and lower levels.

• Sensitivity No 8 (Accumulator pressure). Figures 6.25 to 6.27 show the time trends for the three selected output variables, respectively, when the accumulator pressure takes its higher and its lower values.

• Sensitivity No 9 (Containment pressure). Figures 6.28 to 6.30 show the time trends for the three selected output variables, respectively, when the containment pressure is lower than the base case.

• Sensitivity No 10 (Pellet radius). Figures 6.31 to 6.33 show the time trends for the three selected output variables, respectively, when the initial fuel temperature takes its lower and its higher values (because pellet radius is maximum or minimum, respectively).

GRS sensitivity calculations were performed using a previous base case (that was improved later), so that they are not completely comparable to the other participants calculations and have been omitted here. GRS sensitivity calculations are fully shown in the corresponding section of Appendix F.

Figure 6.3: Base case, Rod surface temperature.
Figure 6.4: Sensitivity №1, Fuel conductivity — Time trend comparison. Upper head pressure.
Figure 6.5: Sensitivity N°1, Fuel conductivity — Time trend comparison. Mass inventory.
Figure 6.6: Sensitivity No1, Fuel conductivity — Time trend comparison. Rod surface temperature.
Figure 6.7: Sensitivity No2, Gap conductivity — Time trend comparison. Upper head pressure.
S2.a Primary circuit mass inventory (lower range value)

S2.b Primary circuit mass inventory (upper range value)

Figure 6.8: Sensitivity No2, Gap conductivity — Time trend comparison. Mass inventory.
Figure 6.9: Sensitivity No. 2, Gap conductivity — Time trend comparison. Rod surface temperature.
Figure 6.10: Sensitivity No3, Decay power — Time trend comparison. Upper head pressure.
Figure 6.11: Sensitivity N°3, Decay power — Time trend comparison. Mass inventory.
Figure 6.12: Sensitivity No.3, Decay power — Time trend comparison. Rod surface temperature.
Figure 6.13: Sensitivity No4, Initial power — Time trend comparison. Upper head pressure.
Figure 6.14: Sensitivity Nº4, Initial power — Time trend comparison. Mass inventory.
Figure 6.15: Sensitivity N°4, Initial power — Time trend comparison. Rod surface temperature.
Figure 6.16: Sensitivity No5, Maximum linear power — Time trend comparison. Upper head pressure.
S5.a Primary circuit mass inventory (lower range value)

S5.b Primary circuit mass inventory (upper range value)

Figure 6.17: Sensitivity N°5, Maximum linear power — Time trend comparison. Mass inventory.
Figure 6.18: Sensitivity N°5, Maximum linear power — Time trend comparison. Rod surface temperature.
Figure 6.19: Sensitivity №6, LPIS delay — Time trend comparison. Upper head pressure.
Figure 6.20: Sensitivity №6, LPIS delay — Time trend comparison. Mass inventory.
Figure 6.21: Sensitivity №6, LPIS delay — Time trend comparison. Rod surface temperature.
Figure 6.22: Sensitivity No. 7, Accumulator liquid volume — Time trend comparison. Upper head pressure.
Figure 6.23: Sensitivity N°7, Accumulator liquid volume — Time trend comparison. Mass inventory.
Figure 6.24: Sensitivity N°7, Accumulator liquid volume — Time trend comparison. Rod surface temperature.
Figure 6.25: Sensitivity N°8, Accumulator pressure — Time trend comparison. Upper head pressure.
Figure 6.26: Sensitivity No 8, Accumulator pressure — Time trend comparison. Mass inventory.
S8.a Rod surface temperature (lower range value)

S8.b Rod surface temperature (upper range value)

Figure 6.27: Sensitivity No8, Accumulator pressure — Time trend comparison. Rod surface temperature.
Figure 6.28: Sensitivity №9, Containment pressure — Time trend comparison. Upper head pressure.
Figure 6.29: Sensitivity N°9, Containment pressure — Time trend comparison. Mass inventory.
Figure 6.30: Sensitivity Nº9, Containment pressure — Time trend comparison. Rod surface temperature.
Figure 6.31: Sensitivity N°10, Pellet radius — Time trend comparison. Upper head pressure.
Figure 6.32: Sensitivity No10, Pellet radius — Time trend comparison. Mass inventory.
Figure 6.33: Sensitivity №10, Pellet radius — Time trend comparison. Rod surface temperature.
6.3 Sensitivity analysis results

Table 6.3 shows the effect that the variation of the different input parameters has on PCT and on time of core quenching, as obtained by the participants in Phase IV.

Figures 6.34 to 6.44 plot graphically the information on Table 6.3. Some sensitivity calculation results have been omitted, for the sake of clarity, because some misunderstandings were found out. Nevertheless most of the results were valid and properly identified in order to draw some conclusions.

For instance, two participants performed the sensitivity analysis for the fuel dimensions using a previous version of the specification. A third one performed the analysis twice. So Figure 6.43 shows the results for those participants using cold dimensions to calculate this sensitivity. Figure 6.44 shows the results for participants that modified the gap dimensions in order to obtain a ± 75 K variation in the average pellet temperature for the core node having the maximum linear power.

<table>
<thead>
<tr>
<th>Participant</th>
<th>ΔPCT</th>
<th>$\Delta t_{\text{REFLOOD}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEKI [A20]</td>
<td>ΔPCT</td>
<td>$\Delta t_{\text{REFLOOD}}$</td>
</tr>
<tr>
<td>CEA [C25]</td>
<td>95.4</td>
<td>-67.8</td>
<td>42.3</td>
<td>-45.9</td>
<td>15.6</td>
<td>13.1</td>
<td>-35.7</td>
<td>20.6</td>
<td>-46.0</td>
<td>42.4</td>
<td>-67.8</td>
<td>42.3</td>
</tr>
<tr>
<td>EDO [T97]</td>
<td>18.6</td>
<td>-2.8</td>
<td>-8.9</td>
<td>-6.0</td>
<td>-41.7</td>
<td>27.3</td>
<td>-9.8</td>
<td>-2.4</td>
<td>-5.0</td>
<td>0.4</td>
<td>-2.8</td>
<td>-8.9</td>
</tr>
<tr>
<td>GRS [A21]</td>
<td>14.0</td>
<td>-2.0</td>
<td>175.4</td>
<td>198.3</td>
<td>-7.2</td>
<td>269.4</td>
<td>65.4</td>
<td>222.0</td>
<td>-0.3</td>
<td>243.1</td>
<td>-2.0</td>
<td>175.4</td>
</tr>
<tr>
<td>IRSE [C25]</td>
<td>60.0</td>
<td>-45.0</td>
<td>70.0</td>
<td>-51.0</td>
<td>-10.0</td>
<td>9.0</td>
<td>6.0</td>
<td>-10.0</td>
<td>-108.0</td>
<td>73.0</td>
<td>-45.0</td>
<td>70.0</td>
</tr>
<tr>
<td>JNES [TR4]</td>
<td>86.8</td>
<td>-57.0</td>
<td>60.9</td>
<td>-35.8</td>
<td>-13.8</td>
<td>16.2</td>
<td>-40.0</td>
<td>58.1</td>
<td>-55.4</td>
<td>56.2</td>
<td>-57.0</td>
<td>60.9</td>
</tr>
<tr>
<td>KAERI [M31]</td>
<td>9.0</td>
<td>1.2</td>
<td>-3.7</td>
<td>2.5</td>
<td>-0.4</td>
<td>4.2</td>
<td>5.9</td>
<td>4.3</td>
<td>-2.0</td>
<td>5.1</td>
<td>1.2</td>
<td>-3.7</td>
</tr>
<tr>
<td>KINS [R5]</td>
<td>54.5</td>
<td>-36.5</td>
<td>-4.9</td>
<td>38.3</td>
<td>-6.0</td>
<td>5.9</td>
<td>-42.7</td>
<td>-22.3</td>
<td>-35.6</td>
<td>49.3</td>
<td>-36.5</td>
<td>-4.9</td>
</tr>
<tr>
<td>NRI-1 [R5]</td>
<td>111.2</td>
<td>-64.4</td>
<td>58.3</td>
<td>-59.4</td>
<td>-20.6</td>
<td>30.2</td>
<td>-48.2</td>
<td>49.5</td>
<td>-56.2</td>
<td>58.1</td>
<td>-64.4</td>
<td>58.3</td>
</tr>
<tr>
<td>PSI [TR4]</td>
<td>15.0</td>
<td>2.0</td>
<td>8.0</td>
<td>-4.0</td>
<td>-7.0</td>
<td>11.0</td>
<td>1.0</td>
<td>14.0</td>
<td>5.0</td>
<td>11.0</td>
<td>2.0</td>
<td>8.0</td>
</tr>
<tr>
<td>UPC [R5]</td>
<td>103.1</td>
<td>-65.4</td>
<td>42.1</td>
<td>-42.6</td>
<td>-23.8</td>
<td>20.4</td>
<td>-38.0</td>
<td>36.0</td>
<td>-63.4</td>
<td>60.2</td>
<td>-65.4</td>
<td>42.1</td>
</tr>
<tr>
<td>UNIP [R5]</td>
<td>4.9</td>
<td>-5.2</td>
<td>1.6</td>
<td>-4.4</td>
<td>-7.5</td>
<td>3.0</td>
<td>-1.4</td>
<td>4.1</td>
<td>-0.4</td>
<td>3.0</td>
<td>-5.2</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table 6.3: ΔPCT and $\Delta t_{\text{REFLOOD}}$ results from sensitivity calculations.
<table>
<thead>
<tr>
<th>Participant</th>
<th>∆ value<sub>spec</sub>-value<sub>RC</sub></th>
<th>∆PCT</th>
<th>∆t<sub>REFLOOD</sub></th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERI [A20]</td>
<td>∆PCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEA [C25]</td>
<td>∆PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>120.7</td>
<td>130.8</td>
</tr>
<tr>
<td>EDO [T97]</td>
<td>∆PCT</td>
<td>2.3</td>
<td>-3.3</td>
<td>15.3</td>
<td>-11.1</td>
<td>2.0</td>
<td>-5.3</td>
<td>-20.5</td>
</tr>
<tr>
<td>GRS [A21]</td>
<td>∆PCT</td>
<td>0.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>126.0</td>
<td></td>
</tr>
<tr>
<td>IRSN [C25]</td>
<td>∆PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>89.4</td>
<td></td>
</tr>
<tr>
<td>JNES [TR4]</td>
<td>∆PCT</td>
<td>10.3</td>
<td>1.6</td>
<td>-9.5</td>
<td>10.9</td>
<td>12.4</td>
<td>11.2</td>
<td>-80.3</td>
</tr>
<tr>
<td>KAERI [M31]</td>
<td>∆PCT</td>
<td>2.0</td>
<td>5.0</td>
<td>2.0</td>
<td>4.0</td>
<td>11.0</td>
<td>43.0</td>
<td>-5.0</td>
</tr>
<tr>
<td>KINS [R5]</td>
<td>∆PCT</td>
<td>-0.6</td>
<td>-5.2</td>
<td>-7.1</td>
<td>0.5</td>
<td>-2.0</td>
<td>-1.4</td>
<td>25.3</td>
</tr>
<tr>
<td>NRI-1 [R5]</td>
<td>∆PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.6</td>
<td>123.2</td>
</tr>
<tr>
<td>PSI [TR4]</td>
<td>∆PCT</td>
<td>12.6</td>
<td>10.3</td>
<td>4.8</td>
<td>13.6</td>
<td>-9.6</td>
<td>14.0</td>
<td>73.0</td>
</tr>
<tr>
<td>UNIPI-1 [R5]</td>
<td>∆PCT</td>
<td>5.9</td>
<td>6.3</td>
<td>-4.0</td>
<td>4.9</td>
<td>12.0</td>
<td>16.5</td>
<td>126.9</td>
</tr>
<tr>
<td>UNIPI-2 [C25]</td>
<td>∆PCT</td>
<td>3.8</td>
<td>-15.7</td>
<td>4.2</td>
<td>1.7</td>
<td>-19.3</td>
<td>5.3</td>
<td>118.2</td>
</tr>
<tr>
<td>UPC [R5]</td>
<td>∆PCT</td>
<td>1.6</td>
<td>-7.0</td>
<td>1.0</td>
<td>0.0</td>
<td>-1.0</td>
<td>11.0</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Table 6.3: ∆PCT and ∆t_{REFLOOD} results from sensitivity calculations (continued).

(1) Core wide
(2) Hot rod in hot fuel assembly
(3) 2 out of 3 ECCS
(4) Hot channel, hot fuel assembly and hot rod in hot fuel assembly
Figure 6.34: Sensitivity No1, Fuel conductivity — Scalar parameters.

Figure 6.35: Sensitivity No2, Gap conductivity — Scalar parameters.

\(^1\)JNES values for these sensitivities are those provided by the authors, maybe some data crossing has occurred.
Figure 6.36: Sensitivity No3, Decay power — Scalar parameters.

Figure 6.37: Sensitivity No4, Initial power — Scalar parameters.
Figure 6.38: Sensitivity No. 5, Maximum linear power — Scalar parameters.

Figure 6.39: Sensitivity No. 6, LPIS delay — Scalar parameters.
Figure 6.40: Sensitivity No7, Accumulator liquid volume — Scalar parameters.

Figure 6.41: Sensitivity No8, Accumulator pressure — Scalar parameters.
Figure 6.42: Sensitivity N°9, Containment pressure — Scalar parameters.

Figure 6.43: Sensitivity N°10, Pellet radius — Scalar parameters.
Figure 6.44: Sensitivity No10, Pellet radius — Scalar parameters.
6.4 Sensitivity analysis summary and conclusions

The sensitivity calculations performed in Phase IV are helpful in preparing the next Phase V of BEMUSE project. They can be used by participants individually:

- when deciding which parameters are to be included in their respective uncertainty analysis;
- after running the uncertainty calculations (for those participants using methods based in Wilks’ formula);
- when deciding whether to accept or to put in question the results of the sensitivity analysis post-calculation.

In order to provide the reader with a better sight of the sensitivity analysis results, the values for ∆PCT and for ∆t_{REFLOOD} given by all participants have been averaged. As reasonable ranges of variation have been assumed for the input parameters, ∆PCT and ∆t_{REFLOOD} values provide a good measure of the influence that these input parameters can have on the calculation results.

Figures 6.45 and 6.46 show those averaged ∆PCT and ∆t_{REFLOOD} values. In fact, the values shown have into account the range of variation of PCT and of t_{REFLOOD} when the sensitive input parameter changes from its lower to its upper value. Also, in these figures, the standard deviation of the ranges (for PCT and t_{REFLOOD}) found by the participants has been included.

So, Figures 6.45 and 6.46 summarize the results of the sensitivity analysis. For the PCT, participants in average have found that the most influential parameters are those related to the energy stored in the fuel elements (i.e. fuel and gap conductivity, power (before and after the scram) and fuel dimensions) and, among them, fuel conductivity, radial power factor (hot rod power) and fuel dimensions.

1The influence has to do both with the sensitivity and with the range of variation (large variations of slightly sensitive input parameters can produce a noticeable change in the output, large sensitivities to parameters that do not change at all would produce no changes in the output).
Regarding the $t_{REFLOOD}$, the *average participant* has encountered that the parameters having more influence in the time of reflood are containment pressure, power after scram (decay power), radial power factor (hot rod power), power before scram (steady state power) and volume of liquid in accumulators. Nevertheless a strong range of variation has been found for the influence of this parameters in the $t_{REFLOOD}$ (see Figures 6.46, and 6.36, 6.37, 6.38, 6.40 and 6.42), so that different participants consider that a given parameter has a very different influence.

This dispersion related to the sensitivity studies is also encountered in the PCT case, but it is milder.

The sensitivity study performed in Phase IV has proved to be useful in order to set up the specifications for Phase V, and has pointed out that the *user* and *code effects* can appear not only in obtaining a reference case value, but also when analysing variations on the reference case. So, in an uncertainty analysis, even participants considering the same uncertain parameters, with similar ranges of variation and using the same method could obtain quite different results.
CHAPTER 7

CONCLUSIONS

Phase IV of BEMUSE programme has dealt with the simulation of a LB-LOCA in a Nuclear Power Plant using the experience gained in the previous Phase II. Calculation results can be used in Phase V which is devoted to uncertainty evaluation.

The objectives of the activity have been fulfilled. The LB-LOCA scenario has been simulated reproducing the phenomena associated to it. In addition a common basis for the future comparison of uncertainty evaluation methodologies has been established.

The connection with the previous Phase II has been ensured and the lessons learned in it have successfully been taken into account. Nodalization techniques tested and used in Phase II, have been followed in Phase IV, not only in the final established nodalizations, but also in the efforts made to explain discrepancies and in the sensitivities tests.

The difficulties caused by the selection of the reference plant have been treated and overcome. They have added some spread in the results but they have not blocked the analytical activity and the work has been carried out successfully.

BEMUSE Phase IV brought up the results that can be summarized as follows: All participants managed to simulate the scenario and predict the main parameters with credible consistency. Maximum values of PCT predicted by participants are quite close one to each other. PCT time trends and basically final rewet still show some disagreements.

The data base produced includes comparative tables, comparative plots and some explanations on the discrepancies between results. The data base is also suitable for providing future explanations if they become scientifically interesting once the following phases are on-going.

At the time when this Phase IV draft is written, all participants are developing a Phase V analysis and their studies are based on the reference calculations produced in Phase IV. The coordinators want to emphasize this point as a proof of how participants accept the usefulness of the results produced. Despite the difficulties encountered Phase IV has been fulfilled with enough credibility.

It is clear that dispersion bands exist but it is also clear that the effort of explaining the reasons of such dispersion is a valuable outcome from this phase. The outcome of BEMUSE Phase IV is also helpful to understand the nuances existing inside the user effect. The discussion on the point related to the full quench has been useful to clarify the "border" between user effect and code effect. This item led to include a new appendix (Appendix G) specifically devoted to deal with user and code effect.

Also the exercise has become a good opportunity to understand that assumptions made by the user due to the lack of information are not part of the traditional user effect and this report has put together the material to deal with this problem. The assumptions are explained in Phase IV specification and after different discussions carried out in the project meetings.

The spread on the maximum PCT does not exceed 260 K between the highest and the lowest prediction. This spread is similar to the one obtained in Phase II.

Participants, in average, have found that for PCT the most influential parameters are those related to the energy stored in the fuel elements and, among them, fuel conductivity, radial power factor (hot-rod power) and fuel dimensions. Regarding the t_{REFLOOD}, the average participant has encountered
that the parameters having more influence in the time of reflood are containment pressure, power after scram (decay power), radial power factor (hot rod power), power before scram (steady state power) and volume of liquid in accumulators.

The sensitivity study performed in Phase IV has proved to be useful in order to set up the specifications for Phase V, and has pointed out that the user and code effects can appear not only in obtaining a reference case value, but also when analyzing variations on the reference case.

Sensitivity calculation results are a good guidance for developing Phase V uncertainty evaluation. BEMUSE Phase IV is a reference good enough to start with Phase V development.

This phase of BEMUSE programme is a successful step that supports the general goals of the whole project which are to evaluate the practicability, quality and reliability of BE methods including uncertainty evaluations in applications relevant to nuclear reactor safety, to develop common understanding and to promote/facilitate their use by the regulatory bodies and the industry.
Bibliography

[14] Input and Output Specifications for the LOFT L2-5 Experiment. Phase 2 of BEMUSE Programme, Rev. 2, DIMNP NT 517(03), Pisa, January 2005.

