ECORA
Evaluation of Computational Fluid Dynamics Methods for Reactor Safety Analysis

Martina Scheuerer
GRSmbH, D-85748 Garching, Forschungsgelände

Contents

- Motivation
- Objectives
- Partners
- Work programme and project structure
- Best Practise Guidelines
- Primary system: Models and experiments
- Containment: Models and experiments
- Summary and conclusions
Motivation

- Shortcomings of one-dimensional system codes in the simulation of three-dimensional, local flow and heat transfer phenomena
- Increased interest in application of three-dimensional CFD software as supplement to system codes
- High safety requirements in nuclear industry require consistent standards for use and assessment of CFD software
- Goals of ECORA:
 - Establish performance criteria for assessment of CFD software
 - Establish Best Practise Guidelines for application and use of CFD software

Objectives

- Assessment of CFD applications in reactor safety:
 - Flows in containment: PANDA experiments
 - Flows in primary system: UPTF experiments
- Best Practise Guidelines for reactor safety:
 - Starting point: ERCOFTAC Best Practise Guidelines
 - Adaptation to CFD application in for nuclear safety
 - Extension on assessment of experimental data
- Recommendations for improvements of CFD software
- Network of European ‘Centres of Competence for CFD Applications in Reactor Safety’
Partner Programme

<table>
<thead>
<tr>
<th>Partner</th>
<th>Country</th>
<th>Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesellschaft für Anlagen- und Reaktorsicherheit</td>
<td>Germany</td>
<td>CFX</td>
</tr>
<tr>
<td>AEA Technology GmbH</td>
<td>Germany</td>
<td>CFX</td>
</tr>
<tr>
<td>Atomic Energy Research Institute (AEKI)</td>
<td>Hungary</td>
<td>FLUENT</td>
</tr>
<tr>
<td>Commissariat a l’Energie Atomique (CEA)</td>
<td>France</td>
<td>Trio_U, STAR_CD</td>
</tr>
<tr>
<td>Groupe Electricite de France (EdF)</td>
<td>France</td>
<td>Code_Saturne</td>
</tr>
<tr>
<td>Forschungszentrum Rossendorf (FZR)</td>
<td>Germany</td>
<td>CFX</td>
</tr>
<tr>
<td>Nuclear Research and Consultancy Group (NRG)</td>
<td>Netherlands</td>
<td>CFX</td>
</tr>
<tr>
<td>Nuclear Research Institute Rez plc.</td>
<td>Czech Rep.</td>
<td>FLUENT, Trio_U</td>
</tr>
<tr>
<td>Paul Scherrer Institute (PSI)</td>
<td>Switzerland</td>
<td>CFX, STAR_CD</td>
</tr>
<tr>
<td>Serco Assurance plc.</td>
<td>U.K.</td>
<td>CFX</td>
</tr>
<tr>
<td>Vattenfall Uetveckling AB</td>
<td>Sweden</td>
<td>FLUENT</td>
</tr>
<tr>
<td>Technical Research Center of Finland (VTT)</td>
<td>Finland</td>
<td>FLUENT</td>
</tr>
</tbody>
</table>

Work Packages

<table>
<thead>
<tr>
<th>#</th>
<th>Titel</th>
<th>WP-leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP1</td>
<td>Establishment of Best Practice Guidelines</td>
<td>AEA</td>
</tr>
<tr>
<td>WP2</td>
<td>Evaluation of CFD Analysis of Primary Loop</td>
<td>NRI</td>
</tr>
<tr>
<td>WP3</td>
<td>Definition of Physical Models and Test Cases for PTS Analysis</td>
<td>CEA</td>
</tr>
<tr>
<td>WP4</td>
<td>Software Development and Verification</td>
<td>AEA</td>
</tr>
<tr>
<td>WP5</td>
<td>Software Validation</td>
<td>NRG</td>
</tr>
<tr>
<td>WP6</td>
<td>Evaluation of CFD Analysis of Containment</td>
<td>GRS</td>
</tr>
<tr>
<td>WP7</td>
<td>Analysis of Selected PANDA Tests</td>
<td>PSI</td>
</tr>
<tr>
<td>WP8</td>
<td>Evaluation of Application of CFD Codes to Reactor Safety</td>
<td>CEA</td>
</tr>
<tr>
<td>WP9</td>
<td>Project and Financial Coordination</td>
<td>GRS</td>
</tr>
<tr>
<td></td>
<td>WP-leader</td>
<td></td>
</tr>
</tbody>
</table>
Project Structure

WP1: Establishment of Best Practice Guidelines

WP2: Evaluation of CFD Analysis of Primary Loop

WP3: Definition of Physical Models and Test Cases for PTS Analysis

WP4: Software Development and Verification

WP5: Software Validation

WP6: Evaluation of CFD Analysis of Containment

WP7: Analysis of Selected PANDA Tests

WP8: Evaluation of Application of CFD Codes to Reactor Safety

Best Practise Guidelines for CFD Simulations

- Types of errors and uncertainties:
 - Numerical errors: Solution or discretization errors, iteration errors, round-off errors
 - Model errors: Inadequacies of selected models
 - User errors: Lack of expertise in geometry and grid generation, definition of boundary conditions, selection of solver parameters, post-processing
 - Application uncertainties: Lack of information on geometry and boundary conditions (turbulence quantities, inlet profile shapes)
 - Software errors

- Provide procedures for quantifying and controlling errors and uncertainties
Procedures for Quantification of Errors

- Procedures for CFD simulations:
 - Definition of target variables: Representative, sensitive
 - Iteration errors: Residuals, global balances, target variables as function of iteration numbers or residuals
 - Spatial discretisation errors: Systematic grid refinement, variation of discretisation scheme
 - Time discretisation errors: Time step refinement, variation of discretisation scheme
 - Model errors: Strategies for model selection, assessment of experimental data, comparison to data
 - Uncertainties: Sensitivity studies, statistical analysis
 - Software errors: Verification, validation, interaction with developers

Application of Best Practise Guidelines

- Pump calculation:
 - Target variables: Efficiency, pressure rise
 - Quantification of iteration and solution error

- Courtesy: T. Hansen, AEA Technology GmbH
Quantification of Iteration and Solution Error

Best Practise Guidelines for Experimental Data

- Types of test cases:
 - Verification
 - Validation
 - Demonstration

- Standardized description of test cases:
 - Geometry
 - Boundary conditions
 - Initial conditions (unsteady flows)
 - Physical effects involved
 - Detail, consistency and accuracy of experimental data
 - Target variables
Primary System: Flow Phenomena

- Emergency Core Cooling (ECC)
- Single-phase flows:
 - Mixing of hot and cold water
- Two-phase flows:
 - Water jet into horizontal pipe filled with steam
 - Transport of water plugs
 - Free surface flows
 - Counter-current flow of steam and water

Primary System: UPTF Experiments
Primary System: UPTF Data

Containment: Flow Phenomena

- Physical models
 - Propagation and mixing of gases (steam, air and H₂)
 - Plumes
 - Impinging jets
 - Stratification
 - Chemical reactions (catalytic recombination)
 - Condensation
- Experiments in PANDA Test Facility
PANDA Experimental Facility

- Six cylindrical, large vessels (total 460 m3). Two tower arrangement of the large vessels with large connection pipes.
- Broad variety of vessel and pool interconnections. Provides flexibility to easily adapt the facility for a variety of investigations.
- Well suited for large-scale thermal-hydraulic tests, especially for containment multi-compartment and 3-D effects.
- Main measurements: injected flow rates, vented flow rates, temperatures, gas concentrations at selected points of interest, velocities at selected points of interest.

SETH PANDA Tests – Free Plumes

- To investigate:
 - Plume features (steam in air or a mixture)
 - Effect of injection elevation on stratification stability
 - Influence of vent location on plume structure
 - Thermal/concentration front propagation in second vessel
- Varying parameters: elevation and outlet velocity of the efflux, initial fluid composition and location of venting.
Conclusion

- Improvement of quality of CFD calculations in reactor safety
 - ECORA Best Practise Guidelines
 - Assessment of shortcomings
 - Improvement of mathematical models

- Higher acceptance of CFD in reactor safety after ECORA

- 1st Step: Establishment of European ‘Centres of Competence for CFD Applications in Reactor Safety’

- Further information on ECORA: www.domino.grs.de/ecora/ecora.nsf