OECD/NEA
WORKSHOP ON INNOVATIONS IN WATER-COOLED REACTOR TECHNOLOGIES

SESSION II-2
RESEARCH ORGANISATION PERSPECTIVES

Main results and lessons of the 10 years innovation research program dedicated to LWR

Caroline THEVENOT, Guy-Marie GAUTIER, Philippe MARSAULT & Jean-François PIGNATEL

11-12 FEBRUARY 2015
Global picture

Nuclear Power Plant connected to the grids:

- **Mainly LWR**: 211 PWR & 76 BWR in OECD countries + 53 VVER*
- **Global distribution**: North America (102 LWR out of 121 NPP), West Europe (118 LWR out of 133 NPP), Asia (67 LWR out of 71 NPP)
- **France**: 1 manufacturer, 1 utility, exclusively PWR (58) + EPR under construction

Increasing nuclear power capacity with over 60 reactors under construction in 13 countries

Plant life extension program + future **renewed nuclear reactor fleet** notably in U.S or in France (coordinated with GEN IV technologies deployment) taking into account constraints in terms of safety requirement, investment cost, construction time, manufacturing capacities, etc.

New realities in the energy global market and evolving **political context**:

- **Global level**: rising global demand for energy, competitiveness (energy cost), financial crisis, Fukushima, security of supply issues, public acceptance
- **EU level**: EC Energy Roadmap 2050, 2030 Framework for Climate & Energy
- **National levels**: e.g. France “Loi sur la transition énergétique”

Research and Innovation for cost competitive, high performance, safe and clean technologies
Research perspective

- **Objective of the session**: Discussion on long term developments that could lead to innovations for future advanced water-cooled reactors and their fuel cycle.

Innovation in LWR vs **breakthrough vs incremental** part of a seamless innovation chain.

- **Technological breakthrough** may bring **significant economic/safety benefits** by reconsidering parts of (or all) the components of a reactor concept.

- For LWR, significant progress might be expected: e.g. innovative temperature-resistant metal fuel or ceramic cladding, a new tight-lattice fuel assembly to optimise uranium resources, modification of the operating point for reactor design simplifications.
RESEARCH AND INNOVATION IN LWR

Illustration with the past CEA Programmes

- **CEA Innovation Programme**: > 10 years of Research and Innovation programs to develop innovative solutions for existing and future LWRs

- **Overall objectives**: Cost reduction, increased safety, high performance core & fuel

- **Various technical fields covered**:
 - **Core and fuel**: high conversion PWR, innovative fuel (e.g. composite CERCER/CERMET, annular fuel pellet), innovative cladding (e.g. coating, SiC/SiC, burnable poisons), etc.
 - **Materials**: new alloys for vessel internal structure, coating (e.g. valve, control rod ratchet mechanism), component manufacturing based on densification of metal power, etc.
 - **Innovative systems**: passive safety systems (e.g. Secondary Condensing System), severe accident management facilities (e.g. innovative containment, core catcher) and other innovative safety systems (e.g. steam injector)
 - **Reactor design**: simplification (e.g. boron-free PWR, low pressure PWR), breakthrough (e.g. SCOR) etc.
 - **Technical economical studies**: qualitative comparison between concepts and systems

- **Supported by methodologies, tools/code development and experimental programs**
Examples – Innovative safety systems

Rational

- **Many systems for various functions** (e.g. reactivity control, residual power removal, corium recovery system) usually **complex and/or expensive**

 ➔ technological breakthrough to bring **economic/safety benefits**

Examples

- **Secondary Condensing System:**
 - Passive residual heat removal system in natural circulation connected to the steam generator
 - Promising results notably in terms of safety improvement (e.g. steam generator tube rupture)

- **Steam Injector:**
 - Replace/complement safety pump injection (passive system)
 - Possible applications into the primary or secondary with steam sources coming from pressurizer, steam generator
 - Example: provide the steam generator with water when the normal supply fails
Examples – Innovative reactor design (1/2)

Rational: simplification of standard PWR design (Ref. 900 MWe French PWR)

Examples:

- Soluble boron-free PWR
 - simplification of plant operation/management (deboration) and improved safety (reactivity accident through heterogeneous boron dilution) + regulation / legislation and acceptability aspects
 - feasibility studies of the reactivity control only through control rods and burnable poisons while maintaining performances and safety criteria – different levels of boron removal
 - encouraging results: with an adequate assembly design, core reactivity adjusted with burnable poisons + an optimised control rod system for core shutdown
 - to be considered: residual penalties of the burnable poison + redundancy of control means + complex load following

- Low pressure PWR
 - cost reduction for components (e.g. vessel, steam generator), possible high burn up and safety systems simplification
 - study of an adequate operating point by reducing the pressure
 - complete file covering: core (neutronic and thermal hydraulic), fuel, thermal hydraulic systems, technical economic evaluation

OECD/NEA - Workshop on Innovations in water-cooled reactor technologies – 11&12/02/2015
Session II-2 - Research organisation perspectives
Examples – Innovative reactor design (2/2)

Rational: Propose new conceptual designs integrating several innovative systems to analyse the performance of these systems and evaluate their interactions and the overall coherence.

Example: SCOR - Simple CCompact Reactor

Evolving basis to evaluate innovative systems, new core design or new strategy

- First version: 600 MWe (threshold effects)
- Then: variation until 1000 MWe (to evaluate the feasibility & possible economic benefits)
- Lately: SMR Version 200 / 150 MWe
Innovative Safety systems

Integrated passive residual heat removal systems

High Ø vessel

Large annular space

2000 MWth SG manufacturing?

2000 MWth SG as the reactor vessel head

2000 MWth SG vessel manufacturing

P ~ 88 bar

Low pressure PWR

Integrated pumps

Submerged coil-type motor

Soluble boron-free PWR

Soluble boron-free PWR

Low core power density

Low power

High Ø vessel

IVR

Integrated control rods

Integrated pressurizer

Integrated pumps

Steam generator

Integrated concept

Threshold effects

SG - Reactor vessel head

SG - Reactor vessel head

Innovative concept

Steam Generator 2000 MWth

Integrated concept

RESEARCH AND INNOVATION IN LWR
Lessons learned from this significant innovation program (> 10 years)

- Many attractive innovative solutions studied
- But lack of industrial applications
 - need for a reinforced industrial involvement (from the very beginning of the studies to define specifications)

Innovation depends on the political context and industrial priorities, such as:

- Economics? e.g. Nuclear vs Shale gas, RES
- Safety? Increased safety demand: e.g. post Fukushima, LTO extension
- Energy mix? e.g. system integration, reactor flexibility, cogeneration
- Optimisation of uranium resources? e.g. Gen III and Gen IV strategies

THANK YOU FOR YOUR ATTENTION