

WENRA Initiatives Related to New Reactor Designs

Dana Drábová State Office for Nuclear Safety Czech Republic

"We, the heads of the national Nuclear Safety Authorities, members of WENRA, commit ourselves to a continuous improvement of nuclear safety in our respective countries"

Basic Facts

- WENRA is an association of the heads of Nuclear Regulatory Authorities of the EU countries with NPPs and Switzerland
- The original ToR* was signed on 4 February 1999
- WENRA has
 - 17 members: Belgium*, Bulgaria, Czech Republic, Finland*, France*, Germany*, Hungary, Italy*, Lithuania, Netherlands*, Romania, Slovakia, Slovenia, Spain*, Sweden*, Switzerland*, United Kingdom*
 - at present 5 observers (non-nuclear countries): Austria, Ireland, Luxemburg, Norway and Poland

Expectations

- Workers & public in Europe expect equivalent levels of safety in operation of nuclear power plants
- In practice this means that there should be:
 - "No substantial differences between countries from the safety point of view in generic, formally issued, national safety requirements, and in their resulting implementation on Nuclear Power Plants"
- Also
 - Independent of regulatory regime & NPP design

Main Objectives

- To develop a common approach to selected nuclear safety and radiation protection issues and regulation, in particular within the EU
 - National safety approaches have been developed from IAEA Safety Standards, the Convention on Nuclear Safety, industrial standards etc., but independently...
- To provide the EU with an independent capability to examine nuclear safety and regulation in (future) applicant countries
 - Nuclear safety was included in the European Union set of enlargement criteria...
- To serve as a network of chief nuclear safety regulators exchanging experience and discussing significant safety issues

Main Achievements in 10-Year History

- WENRA has become an internationally recognized association with a unique methodology, and has
 - contributed to improvement of national nuclear safety requirements through the formulation of common SRLs
 - contributed to improvement of the IAEA safety standards
 - created a new platform for open information exchange among regulators
- 2000 Report on Nuclear Safety in EU Applicant Countries
- 2006 Report on Harmonization of Reactor Safety in WENRA Countries

Working Groups – RHWG and WGWD

Two Working Groups established to **harmonise** safety approaches with the aim to continuously improve nuclear safety in the following target areas:

- Reactor Safety
 - Reactor Harmonisation Working Group (RHWG)
- Radioactive Waste, Spent Fuel Storage, Decommissioning
 - Working Group on Waste and Decommissioning (WGWD)

RHWG Activities

- Original mandate of RHWG (harmonization of requirements for existing reactors) fulfilled, follow-up ongoing:
 - = monitoring of national action plans
 - experience feedback on update of regulations
 - ensuring non-divergence of interpretations
- New task (2008) formulation of safety objectives for "new reactors"

Rationale for a study on new reactors

- Support WENRA's vision of a comparable, high level of nuclear safety in Europe
 - Influence, from the European regulators' perspective, the safety standards for new plants
 - Further improve the safety of existing plants
 - Basis for keeping Reference Levels for existing reactors up to date

Expected content of the report on new reactors

- What do we mean by "new reactors"
- Safety objectives for new reactors
 - Qualitative high-level objectives
 - Improvements gained using these objectives (compared to existing reactors)
- Quantitative safety goals to drive compliance with safety objectives
- Areas for technical improvements in meeting the safety objectives
- Recommendations on the use of the safety objectives
- Applicability of Reference Levels for existing reactors

Review of the relevant documentation

- IAEA SF-1 (2006) Fundamental safety principles
 - Systematic investigation of the FSP
- INSAG-10 and 12
- NEA documentation
- National regulations:
 - Bulgaria, Finland, France/Germany, UK
 - USA, Canada
 - SKI reports on probabilistic safety goals
- European Utilities Requirements document

Safety objectives (1)

- The IAEA SF-1 document is a sound basis for the safety objectives for new reactors
- FSP 5: "optimization of protection" (improve safety as far as reasonably achievable)
 - For new reactors, more significant improvements become reasonably achievable, in particular concerning severe accident management in the short and long term
- FSP 3, 6, 7, 8 are especially relevant to formulate safety objectives for new reactors

Safety objectives (2)

- FSP 3 "effective leadership and management of safety"
 - Safety objective related to a coordinated safety approach among organizations
- FSP 6 "limitation of risks to individuals" and FSP 7 "protection of present and future generations"
 - Reduce the impact of normal operation
- FSP 8 "Prevention of accidents"
 - Reinforce each level of defence-in-depth
 - Reinforce the independence of these levels

On-going work (1)

- Quantitative goals to drive compliance
 - For each safety objective : are there quantitative goals related to this objective
 - Exploration of potential quantitative safety goals that are already used in some countries
 - Including probabilistic goals
 - On which of these goals can we find a consensus?
 - How to use of these goals ?

On-going work (2)

- Reinforcement of the Defence in Depth for new reactors
 - the practicability of safety improvements at design stage is greater than that for an operating plant, more stringent application of the reference levels is expected for new reactors.
 - there is room for safety improvements that go beyond the intent of the reference levels for existing reactors and which reflect the use of state-of-the art methodologies and techniques and the results of safety research.

On-going work (3)

Classification of the applicability of the RLs to new reactors:

- Fully applicable
- Applicable but greater expectations
- More stringent description is necessary
- Issue which is not covered by the RLs

Conclusions

- It already appears that common safety objectives for new reactors among WENRA countries can be derived from the IAEA top-level documents
 - Covers technical issues and safety management
- The reference levels developed by WENRA for existing reactors are widely relevant also for new reactors
- A report to WENRA will be issued before the November 2009 meeting, along the lines developed in this presentation