MINOR **ACTINIDES** TRANSMUTATION STUDIES AT CEA: SOME REACTOR PHYSICS ASPECTS

M. SALVATORES CEA/DRN/DER/SPRC CEN Cadarache, France

AN EXAMPLE

"SELF-RECYCLING" IN A SUPERPHENIX-TYPE REACTOR (IN AN HOMOGENEOUS MODE):

- INITIAL REACTOR LOADING FROM STANDARD-PWR PU (AT 33GWd/t), INCLUDING MINAC;
- SUCCESSIVE RECYCLING:
 - IRRADIATION CYCLE OF 960 DAYS AT NOMINAL POWER
 - COOLING TIME/AGEING: 1 YEAR
 - NO LOSSES AT REPROCESSING

THE EQUILIBRIUM IS OBTAINED AFTER -12 CYCLES

(THE INITIAL PU LOADING IS EQUIVALENT TO WHAT WOULD COME OUT FROM THE OPERATION OF A STANDARD PWR DURING 30 YEARS).

3/t heavy met. g/thL	dN ^{7 ε 2}	2 4 1 Am	242m	2 + ³ Am	2 + 3 Cm	2 + + CM	2 * 5 Cm
Trifial fuel Combustible initial	6300	8000	7.2	2100	1	54	26
Equilibrium Puep Combustible Puep équilibre	720	2500	290	1900	20	2100	0111

Mass inventory of MINAC at equilibre Inventaire massique des actinides mineurs à l'équilibre .. Tableau 15

BASIC DATA

INTEGRAL EXPERIMENTS

CORE AND FUEL CYCLE STUDIES

BASIC DATA

1- THE **JEF-2** DATA BASE **IS AVAILABLE** (February 1990) **MINAC** NEUTRON DATA MOSTLY FROM **JEF-1**.

- 2 VALIDATION : CADARACHE KfK SATISFACTORY RESULTS
- **3** NEW AND WIDER BENCHMARKING UNDERWAY
- 4 DATA/VALIDATION (PARTLY) MISSING UP-TO-NOW :
 - RESONANCE SELF-SHIELDING
 - DELAYED NEUTRON DATA
 - DECAY HEAT RELATED DATA
 - COVARIANCES
 - PHOTON PRODUCTION DATA

INTEGRAL EXPERIMENTS AT CEA

IRRADIATED FUEL EXPERIMENTS :

a) FBR SPECTRA (PHENIX) :

- SEPARATE ISOTOPE SAMPLES IRRADIATION (PROFIL-I and PROFIL-II)
- SPECIAL FUEL PINS IRRADIATION (TRAPU)
- ACTINIDE PINS IRRADIATION (SUPERFACT)

b) LWR SPECTRA (MELUSINE)

- SHERWOOD (5 x 5 SQUARE LATTICE WITH STANDARD 17 x 17 PWR FUEL)
 CENTRAL PIN WITH U0₂ PELLETS, DOPED WITH MINAC
- ANALYSIS OF IRRADIATED FUEL IN STANDARD **PWRs** (WITH VARYING BURN-UP), AND IN **PWR WITH MOX** RECYCLING

Fig.2

Scheme of a PROFIL pin irradiation in PHENIX

85500		Position		Chemical	I., I	
		(mm)	Isotope	form	Mass	
1					(mq)	
		<u>1</u> 80	U235	u 02	22	
		<u>17</u> 0	Nd145	Nd_2O_3	22	
	0	160	Pd105	Pd	21,7	
		150	Cs133	Cs F	23,4	
		140	Ru101	Ru	19,6	
		130	M095	Mo	21,5	
		120	Pu238	Pu O₂	14	
Samples	2	110	Mo97	Mo	21,7	
<u>sampres</u>	-	100	Pu 239	PuOg	~10	
		90	u 235	u 0 ₂	22,5	
		80	<u>Am241</u>	AmO₂	10,0	
		70	U238	u O 😦	22,3	
		60	Pu240	Pu O 🖸	3,7	Plutonium and
		50	Li nal.		3,8	Américium
		40	Pu 242	PuOt	29	
			B nat.	B"	1,1	
		20	5 m U 9	Smg O3	25,8	
0.000		10	Pu 241	Pu O _f	4,3	
Core ,		0	U 235	u Oe	24,1	
mid-plane		-10	Pu 239	PuO₂	~10	[
		-220	B nat.	В	1,0	References
		-30	Pu240	Pu O ₂	6	
Maximum		-40	U 2 3 8	U 01	23	
		-50	Pu241	Pu O ₂	5	
of flux		-60	<u>Li nal.</u>	LIF_	3,7	
		-70	Pu239	Pu O ₂	~10	
		-80	Ru101	Ru	20	7772
		-90	U235	UQ	23,9	🖾 Uranium
		-100	U238	UO_2	23,7	
		-110	Pu240	PuO ₂	6,3	
		- 120	<u>Cs133</u>	Cs F	22,4	
		-130	Pu 242	PuO2	27	
		-140	Mo 95	Μο	21,9	
	Ц	-150	Pd 105	Pd	20	E Fission products
<u>Ctondord</u>	<u> </u>	-160	Pu 241	Pu O *	_12,5	
Standard		- 170	B nal.	В	1,3	
PHENIX		-180	U 235	<u>u</u> 0 ₂	24,5	
clad		-190	Li nat.		4,2	
	Ц	-200		RU	19 25	
	Ē	-210	PU 242	FU 02	20	
	÷	-220	D1 220		126	
		-230	Ma 07		14.0	
		-250	Am 241		13.7	
	T	-ZốŬ	Sm 149	Sm 90	224.7	
		-270 _	11235	110.	25	
	<u> (114</u>			20	<u>ــــــــــ</u>	J
			4	50		

 $\frac{\text{TABLE V}}{\text{C/E values with JEP-1 data on }^{237}\text{Np reaction rates, obtained from e }^{237}\text{Np sample analysis <math>\bullet$ fter irradiation in the PHENIX core.

I	Reaction	I	C/E
: ! ! !	σ _c ²³⁷ Νp ⁰ n,2n ²³⁷ Np	1 1	$\begin{array}{c} 0.90 \pm 0.05 \\ 1.19 \pm 0.15^{(a)} \\ 1 \end{array}$

(a) This results is • ssociated to • specific branching ratio of the

reaction 237_{Np} - > 236_{Np}(long lived) n,2n 236_{Np}(short lived) consistent with CARDNER • nd, CARDNER • valuation.

DECAY SCHEME RELATED TO $\frac{237}{Np(n,2n)}$ and (γ,n)

Rupavimant		%Pu iso	otope com	position	
Experiment	238Pu	239Pu	24●Pu	241 _{Pu}	242Pu
TRAPU- 1	0.1	73.3	21.9	4.0	0.7
TRAPU-2	0.8	71.4	18.5	7.4	1.9
TRAPU-3	0.2	34.0	49.4	10.0	6.4

TABLE I ISOTOPIC COMPOSITION OF THE THREE TRAPU FUEL PINS

TABLE II SEPARATE ISOTOPES IRRADIATION IN PROFILEXPERIMENTS

Experiment	Th	u	Np	Pu	Am	CM
PROF I L-1		235 238		238 239 240 241 242	241	
PROFIL-2	232	233 234 235 238	237	238 239 240 242	241 243	244

TABLE 3			
$\ensuremath{C/E}$ values for	THE PROFIL	EXPERIMENTS	USING
	JEF-1 DATA		

	C/E WITH JEF-1
DATA TYPE (A)	AVERAGE VALUE (PROFIL-1+PROFIL-2)
$ \begin{array}{c} \sigma_{c}(235U) \\ \sigma_{c}(237)P) \\ \sigma_{c}(237)P) \\ \sigma_{c}(237)P \\ \sigma_{c}($	$\begin{array}{c} 0.97 \pm 1.4\% \\ 0.96 \pm 1.6\% \\ 0.90 \pm 4.1\% \\ 1.19 \pm 15 \% \\ 0.95 \pm 3 \% \\ 0.97 \pm 1.8\% \\ 1.38 \pm 11\% \\ 1.06 \pm 1.6\% \\ 0.83 \pm 14 \% \\ 1.11 \pm 3.7\% \\ 1.16 \pm 3.5\% \\ 1.03 \pm 1.4\% \\ 0.94 \pm 5 \% \end{array}$

(A) All the results are average reaction rate ratios ("spectral indices")
 related to the ²³⁵U fission rate.

^{2 3 8} U=100	TRAPU–1	TRAPU-2	trapu–3
2 3 4 U 2 3 5 U 2 3 6 U 2 3 7 Np 2 3 8 PU 2 3 9 PU 2 4 9 PU 2 4 9 PU 2 4 9 PU 2 4 1 Am 2 4 2 Am 2 4 3 Am 2 4 3 Am 2 4 3 Cm 2 4 6 Cm	$\begin{array}{c} 0.98 \pm 2.5\% \\ 0.99 \pm 0.3\% \\ 0.98 \pm 0.5\% \\ 0.91 \pm 6.82 \\ 1.02 \pm 0.92 \\ 1.00 \pm 0.4\% \\ 0.99 \pm 0.42 \\ 1.03 \pm 0.4\% \\ 1.08 \pm 0.5\% \\ 0.95 \pm 3.02 \\ 1.36 \pm 3.6\% \\ 1.08 \pm 3.6\% \\ 0.96 \pm 2.42 \\ \end{array}$	1.00 ± 1.3% 1.01 ± 0.2% 1.00 ± 0.4% 0.90 ± 3.3% 1.00 ± 0.4% 0.98 ± 0.3% 1.00 ± 0.3% 1.03 ± 0.3% 1.03 ± 0.42 0.96 ± 3.6% 1.41 ± 4.0% 1.05 i 4.0% 0.95 ± 2.62 1.13 ± 2.7% 1.15 * 2.2%	1.04 ± 1.0% 1.01 ± 0.2% 0.99 ± 0.3% 0.85 ± 3.2% 0.99 ± 0.4% 0.98 * 0.3% 0.98 ± 0.3% 1.02 ± 0.3% 1.01 * 0.3% 0.97 ± 2.12 1.36 ± 2.5% 0.94 ± 2.1% 1.13 ± 2.6% 1.16 ± 1.7%'

 TABLE IV

 C/E VALUES ON FINAL (END OF IRRADIATION) COMPOSITIONS

 IN THE TRAPU EXPERIMENTS (PERCENTAGE VALUES) USING JEF-1 DATA

SUPERFACT 1

CAPSULE EXPERIMENTALE **PHENIX**

REPARTITION DES AIGUILLES

VUE de DESSUS

PRUNIER DRN-DEC 08.10.90 436

Reaction Rate	Experimental value normalized to the ²³⁵ U fission reaction rate
235 _U Absorption	1.233 ± 0.017
235 Capture	0.233 ±0.003
238 _U Capture	0.01917 ±0.00014
²³⁹ Pu capture	1:508′± 0.010
240 Pu Capture	5.100 ± 0.075
²⁴¹ Pu Capture	1.022 ± 0.029
²⁴² Pu Capture	0.604 ± 0.016
²⁴¹ Am capture	3.18s ± 0.065
²⁴³ Am Capture	1.248 ± 0.025
244Cm Capture	0.316 ± 0.015
_	

TABLE VI

SHERWOOD EXPERIMENT

HIGH ENRICHMENT PLAGES D'ENRICHISSEMENT INITIAL

ET DE TAUX DE COMBUSTION ET UDIES

LWR irradiated fuel analysis

c) HCLWR SPECTRA (MELUSINE)

- **ICARE** EXPERIMENTS:

TWO EXPERIMENTAL PINS WITH U0, PELLETS, DOPED WITH MINAC, AT THE CENTER OF 261 PIN LATTICE OF MOX FUEL (8,5% ENRICHMENT)

- TWO VALUES OF THE Vm/Vf RATIO HAVE BEEN STUDIED : $V_m/V_g = 0.5$ and 0.9

(THESE EXPERIMENTS ARE CONSISTENT WITH THE CRITICAL EXPERIMENT PROGRAM **ERASME**, **PERFORMED** IN THE CRITICAL FACILITY **EOLE** AT CADARACHE)

IRRADI AT ION ICARE DANS MELUSINE

CRITICAL EXPERIMENTS

FISSION CHAMBER MEASUREMENTS OF :

- F (Np-237) AND OTHER **Pu** ISOTOPES
- F (Am-241) F (Am-243)
- F (Cm-244)
- F (Pu-238)

A VARIETY OF CRITICAL CONFIGURATIONS:

FBR SPECTRA IN MASURCA

LWR SPECTRA IN EOLE

* The BALZAC experiment in MASCIRCA: measurement of "reactivity / atom" of minor Pu isotopes and Am-241.

CORE NEUTRONICS AND FUEL CYCLE STUDIES

- STRATEGY STUDIES (COSI CODE)
- RADIOTOXICITY IN DIFFERENT SCENARIOS
- **FBR** CORE STUDIES FOR TRANSMUTATION (ALSO ADVANCED **LWRs**) ⇒ HOW FAST AN EQUILIBRIUM (Np, Am) IS REACHED
- DESIGN PARAMETERS UNCERTAINTY STUDIES IN FBRs:
 - N₂VOID COEFFICIENT
 - DOPPLER
 - ∆q/CYCLE (IBG)
- WHAT ARE THE DESIGNS FOR AN "OPTIMUM" BURNING STRATEGY
 - e.g. \Rightarrow "OUT OF CORE" POSITIONS IN AN LMFBR
 - \Rightarrow IF HOMOGENEOUS RECYCLING, WHAT INTERNAL BREEDING GAIN (IBG) SHOULD BE ADOPTED