TRANSMUTATION OF TRANSURANIUM ELEMENTS

BY A METALLIC FUEL FBR

T. INOUE, T. MATSUMURA, A. SASAHARA Central Research Institute of Electric Power Industry (CRIEPI)

 $L. \ \mbox{KOCH}, \ \mbox{J.C.SPIRLET} \ \mbox{European Institute for Transuranium Elements}$

Fig Scheme of TRU partitioning and transmutation with metallic fuel FBR recycle

TRANSMUTATION OF ACTINIDES

Concept : Burning in a Commercial FBR with Metallic Fuel under Development.

Based on the Alloy of U-Pu-MA-Zr with some amount of impurities.**

Subject : • Analysis of Transmutation Rate of MA by simulation Code and Design Study of Fuel with MA including Core Analysis.

• Fabrication and Characterization Studies of Fuel Alloy and

Irradiation Study with PIE .

MA : mainly Np, Am, Cm

** : The Amount of Impurity depends on the refining efficiency of Pyrochemical Separation Analysis of Transmutation Rate of IVIA

— Development of the Analysis Code that can treat complicated Nuclear Transformation of TRUs.

CITATION-TRU Code

 Analysis of Transmutation Rate by the CITATION-TRU Code.

Ex. Metallic Fuel vs. Oxide Fuel (MOX)

Metallic Fuels with TRUS vs. with TRUS + REs

Fig. Calculation flow

Fig. Burn-up chain of heavy metal

cl) INNER COREUnit(cm)C2) OUTER CORERB)RADIAL BLANKETAB) AXIAL BLANKETSH) SUS316 SHIELDBH) B4C SHIELD

Fig. 1000MWe MOX fuel FBR design

Homogeneous core with two Pu-enrichment regions.

Refueling interval: 1year, Fuel loading:3 batches.

TRU loading: uniform distribution in fuel.

CI) INNER CORE Unit(cm) C2) OUTER CORE RB) RADIAL BLANKET PL) GAS PLENUM SH) SUS316 SHIELD BH) B4C SHIELD

• Operational cycle :1 year

· Fuel exchange of inner and outer core :3 batch

Fig. 1000MWe metal fuel FBR design

Fig. Transmutation rate of TRU with and without rare earth

Fig. FBR equilibrium recycle (TRUS 5%,REs 5%)

Fig. FBR equilibrium recycle (TRU 2 %, Rare earth 2 %)

MICROSTRUCTURE OF FUEL ALLOY WITH MINOR ACTINIDES

Preparation of Actinides

Np Metal $NpO_2 + 2 Ca \xrightarrow{CaCl_2} 2 CaO + Np \bigwedge$ Pu Metal PuC + T a \longrightarrow TaC + Pu \bigwedge $PuO_2 + Th \longrightarrow$ ThO₂ + Pu \bigwedge Am Metal $Am_2O_3 + 2 La \longrightarrow La_2O_3 + 2 Am \bigwedge$

Cm Metal

 $CmO2 + Th \longrightarrow ThO_2 + Cm/$

411

		u	Pu	Zr	Np	Am	Ce	Nd	Y
CR1 CR2	U- Zr - Y - Nd - Ce	62.7		7			5.2	16.1	1.04
CR6	U - Pu - Zr - Np - Ce - Nd	45		10.7	9.7		3.7	11.6	
CR7	U- Pu - Zr - Np - Ce - Nd	68.9	18	10	1.2		0.5	1.4	
CR3	Pu - Am		50			50		· · · · · · · · · · · · · · · · ·	
CR4	u - A m	90				10			
CR5	Np -Am	•			67	33			
CR8	UNp	40			60			•	• • • • • • • • • • •
CR11	U - Pu - Zr - Np - Am - Ce - Nd	68		18 10) 1.2	0.8	0.5	1.4	

Table Alloys Fabricated for Metallographic Analysis

<u>Fig. 15</u> Photomicrograph of specimen CR 1

Fig. 16 Electron absorption and X-ray scanning micrographs showing the microstructure and components of the phases in area 1 of specimen CR 1.

CR 3

CR 5

CR 4

CR6

Specimens CR 3 to CR 8 as revealed by a-autoradiography. White spots correspond to high <u>Fig. 1 1</u> a-activity.

		2		,	、	U	Pu	Zr	Ce	Nd	Νp	Am
Specimen	Nr: CR	3	Composition ((wt%)	-	~50	-	-	-	-	~ 50

X[°] 20

417

		u	Pu Zi	r Ce	Nd	Np	Am
Specimen Nr: CR 4 Composition ((wt%)	-90	-	-	-		-10

x 20

Spogimon	Nrc •	C	R	5	~	,		Pu	Zr	Ce	Nd	Np	Am
specimen	INI ·	U	IV	J	Composition	(Wt%)					67	-33

X 20

		11				u	ΡU	Zr	Ce	Nd	Np	Am
Specimen	Nr: CR	11	Composition	(wt왕)	68.1	18	10	0.5	1.4	1,2	0.8

a autoradiograph

X 0

Specimen	11			u	Pu	Zr	Ce	Nd	Np	Am
	11	Composition (wt%)	68.1	18	10	05	1,4	1.2	0,8	

Summary

1. The actinides are miscible in the molten state.

- 2. Neighboring actinides in the periodic table exhibited the best miscibility. (e.g. U Np and Pu Am)
- 3. Dendrite formation was stronger for Np -Am and in the case of U Am large crystals were formed.
- 4. U Pu Zr alloy with minor actinides and rare earths of 2 wt% in each shows homogeneous microstructure with small particles having Am and rare earths along the grain boundary.

Fig. 19.1 Schematic binary phase diagram of the actinide metals. (After Smith and Kmetho [37])