HIGH TEMPERATURE ACTINIDE PARTITIONING CHEMISTRY

Charles C. McPheeters

Chemical Technology Division Argonne National Laboratory

First OECD/NEA Information Exchange Meeting on Separation and Transmutation of Actinides and Fission Products

November 5-9, 1990

Presentation by Mr. McPheeters

In opening his presentation Mr. McPheeters noted that the fuel cycle facility attached to **EBR-II** had reprocessed some 35000 fuel pins since it started up in the 1960s. The cell had now been decontaminated and refurbished ready for the installation of new equipment for the IFR fuel cycle. It was intended to start this up in September 1991. There is to be one **electro-refiner** unit with two cathodes, each with a capacity for collecting 10kg of uranium and thus, in full-time operation able to support a reactor of 600MWe.

In describing the **electro-refining** process Mr. McPheeters noted that the distribution coefficients he was using were the inverse of those used by Japanese presenters earlier in the meeting, i.e. he was using the ratio of concentration in the chloride to concentration in the metal phase. After reporting some results using a lithium, sodium, calcium, barium chloride electrolyte he added that recent work on a lithium/potassium chloride system gave distribution coefficients of 35 and above for the rare earths, 3.4 for americium and curium and 1.9 for neptunium and plutonium.

After outlining the waste treatment processes he suggested that with further successful development of the process, after stripping the **transuranics** from the salt wastes it would be possible to reduce plutonium to less than 100 **nanoCi/g** of salt and perhaps even to less than 10 **nanoCi/g**.

Consideration was being given to using spent LWR fuel as a source for **fuelling** the LMR. Small scale work had been undertaken on a flowsheet involving an initial reduction by calcium with two alternative processes for separating the TRU and rare earths using either salts or magnesium as an extracting medium.

Responding to a question, Mr. McPheeters said that the decontamination factor for rare earths was about 20 in the **IFR** process.

EBR-II Reactor and Fuel Cycle Facility

ELECTROREFINING PROCESS FOR IFR CORE AND BLANKET

Schematic Representation of **Electrorefiner** Operation – Anodic Dissolution/Solid Cathode

equiv. CI	82.82.3 26.6.72 8.0 8.0 8.0 9.0 1.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.0
n of kcal/g-	Recise Re
ormatio S, −∆G	あるるのの ふろろのの し イ ー こ こ の マ ー ー ー ろ の ひ し ー ー ー ろ の ひ し ー ー ー ろ の ひ し ー ー ー ろ の ひ つ ー ー ー ろ の
es of F 1 773°K	CmCl ₃ MgCl ₃ VCl ₃ VCl ₃ VCl ₃
lEnergi rides a'	82 82 82 85 85 85 85 85 85 85 85 85 85 85 85 85
Free Chlo	A Z C L C Z C C C C C C C C C C C C C C C

Basic Theory

Equilibrium between metal-salt phases
U + PuCl₃ = UCl₃ + Pu
Distribution coefficients:

$$\frac{X_{UCl_{3}}}{X_{U}} = \left[\begin{array}{c} X_{PuCl_{3}} \\ \overline{X}_{Pu} \end{array} \right] \left\{ \begin{array}{c} \overbrace{Y_{PuCl_{3}}} \\ \overbrace{Y_{Ucl_{3}}} \end{array} \right] \left\{ \begin{array}{c} \overbrace{Y_{U}} \\ \overbrace{Y_{Pu}} \end{array} \right] \left[\exp\left[-\frac{\Delta G^{\circ}}{RT} \right] \right] \right\}$$
$$\cdot_{u=} \left[\left(\alpha_{Pu} \right) \left[D_{Pu} \right]^{=} \left(\alpha_{Am} \right) \left(D_{Am} \right) = \left[\alpha_{Nd} \right] \left(D_{Nd} \right) \cdot \cdot \cdot \cdot \right]$$
$$= \left[\left[\left(\alpha_{Li} \right) \left[\frac{X_{LiCi}}{X_{Li}} \right] \right]^{3} = \left[\left(\alpha_{Li} \right) \left[\frac{0.5}{X_{Li}} \right] \right]^{3}$$

Chemical Technology Division

ARGON ATMOSPHERE GLOVE BOX FOR TESTING THE ENGINEERING-SCALE (10 kg) ELECTRO-REFINER

Anodic Dissolution Basket Assembly (Three of four baskets used are shown.)

ANL Neg. 5634K, Frame #6

ELECTROTRANSPORT REACTION

Anode (Cadmium) $u \longrightarrow U^{+3} + 3e^{-3}$ $Pu \longrightarrow Pu^{+3} + 3e^{-3}$

Cathode (Solid Mandrel)

$$U^{+3} + 3e^{-} \longrightarrow U$$
 (s)
 $Pu^{+3} + 3e^{-} \longrightarrow Pu(s)$
 $UCl_{3} + Pu(s) \longrightarrow PuCl_{3} + U(s)$

LIQUID CADMIUM CATHODE ASSEMBLY FOR COLLECTING PLUTONIUM IN THE ELECTRO-REFINER

STARTING, INTERMEDIATE, AND FINAL COMPOSITIONS FOR PRODUCT PURIFICATION AND CONSOLIDATION

	Starting Composition, g (Wt %)		sition, Intermediate ^{a,b} Composition, g (Wt %)		Final Composition, 9
	100.42 U-Zr	(21.75)	100.42 U-Zr	(52.60)	.129.33
Run #1	28.92 pu	(6.26)	28.92 pu	(15.15)	U-Pu-Zr ^C
	332.40 Cd	(71,.99)	61.56 Cd	(32.25)	
Run #2	128.21 U	(26.08)	128.21 U	(75.28)	156.28
	· 28.07 Pu	(5.71)	28.07 Pu	(16.48)	U-Pu ^d
	335.19 Cd	(68.21)	14.03 Cd	(8.24)	

^aX-ray diffraction analysis identified intermediate phases to be alpha-U and PuCd ₆. ^b Maximum heating temperature was 668°C for Run #1 and 702°C for Run #2.

° Product contained <150 ppm Cd and Be.

^d Product contained 54 ppm Cd and 287 ppm Be.

Dissoution 🗢 rradiated Fuel Segmen s

Percentage of Initial Material

Ten Kilogram Uranium Deposit - 1990 (ANL Neg. 9132)

(ANL Neg. 5384K Frame #12)

ELECTRODEPOSITION OF URANIUM INTO LIQUID, CADMIUM CATHODE

	LCC-1	<u>LCC-2</u>	<u>LCC-3</u>	<u>LCC-4</u>	<u>LCC-5</u>
Deposition Current, A	25	26	25-30	64	170
Cutoff Voltage, V	-1.0	-1.0	-1.0	-1.0	-1.0
Deposition Time, h	56	68	130	33	18
Cathode Efficiency, %	73	54	46	4 9 ^a	b
Cadmium Load, kg	8.7	12.5	12.2	9.6	16,0
Uranium Collected, kg	3.0	2.8	4.4	3 ^a	b
Vol. Fraction Uranium, %	14	10	12	8.5°	b

^aBased on increased weight of cathode at end of run. ^bChemical analysis of samples from the liquidcadmium cathode product has not been completed.

^{&#}x27;Based on measured volume of liquid cadmium cathode.

EXTRACTION OF TRU ELEMENTS FROM SALT BY CD – U ALLOY

00962

Pyrocontactor Salt Treatment Test Facility

Laboratory Demonstration of Salt Stripping

PACKAGING SALT FOR DISPOSAL

Candidate Waste Forms

• Alter Chemical Form (e.g., glass)

Messy

- Mortar Matrix
 - H₂generated by water radiolysis
- Ceramic Matrix

Fair strength Slows leaching Incorporate absorbents for Cs and Sr

SUMMARY AND CONCLUSIONS

- ANODIC DISSOLUTION OF METAL FUEL (U-Zr and U- Pu-Zr) IS RAPID, EFFICIENT, AND COMPLETE.
- ELECTROCHEMICAL DEPOSITION OF 10-kg URANIUM ON A SOLID CATHODE HAS BEEN ACHIEVED IN 27 h.
- ELECTROCHEMICAL DEPOSITION OF U-Pu (URANIUM AND PuCd) IN A LIQUID CADMIUM CATHODEHAS BEEN DEMONSTRATED.
- PRODUCTION OF NO N-TRU SALT WASTE HAS BEEN DEMONSTRATED ON A SMALL SCALE.
- WE THINK THAT NON-TRU SALT AND METAL WASTE FORMS CAN BE DEVELOPED THAT WILL BE SUITABLE FOR DISPOSAL IN A GEOLOGICAL REPOSITORY.