BASIC CONCEPT OF PARTITIONING AND TRANSMUTATION RESEARCH IN CRIEPI AND DENIGRATION AND CHLORINATION TECHNOLOGY FOR PYROMETALLURGICAL PARTITIONING

Masahiro SAKATA Hajime MIYASHIRO Tadashi INOUE

Central Research Institute of Electric Power Industry (CRIEPI)

Schematic Illustration of Chlorination Step

Design study of Chlorination Step Conditions for Design

Denigrated Material	300 kg/ Day				
Conditions	Temperature 780 "C Carbon 36 kg Clorine Gas 1100 kg				
	Specifications				
Major Apparatus	Chlorination Furnace $1.2 \text{ mD} \times 2.3 \text{ mH}$ Condenser $0.9 \text{ mD} \times 1.9 \text{ mH}$ Powder Blender $1.8 \text{ mW} \times 0.5 \text{ mL} \times 0.45 \text{ mH}$				
Number of Batch	3 Batches/ Day				
Hot Cell	5.5 mW \times 6 mL \times 8.5 mH				

Relationship between Vapor Pressure and Temperature for Chlorides

Effect of temperature on Volatilization of Mo,Zr,Fe and U

Sample	1	28.97	g
Carbon	:	3.37	ğ
Chlorine Gas	:	0.2	Ĭ/rein
Time	:	4.0	hr

Schematic illustration of Chlorination Test Apparatus

Standard Free Energy Change of Reaction of Oxide to Chloride

- @ Feed Tank
- Oven
- 3 Microwave Oscillator

(4) Apparatus for Off Gas Treatment

Receiving Vessel

Design Study of Denigration Step

Conditions for Design

HLW	20001 / Day
Condition At M	emperature 700 °C~ 800 "C psorption Efficiency of Microwave 0.7 icrowave Power per Unit Volume of Oven

Specifications

Major Apparatus	Oven 2mW×2mL×2mH Microwave Oscillator 10OKW×2
number of Batch	4 Batches/ Day
Hot cell	5mW $ imes$ 8mW $ imes$ 4mH

Relationship between Volutilization Rates of Alkaline Elements and HeatingTime

Relationship between Microwave Power and Surface Temperature of Solidified Sample

Schematic Illustration of Microwave Heating Test Apparatus

	48,000 MWD/t Uranium, PV	VR,4-Yr Cooling)	
	Elements	Wt.%	_
U	U	7.44	
T'RU	Np		
	Pu	0.08	2.30
	AIII Cm	0.95	
	U+TRU	9.75	
	Rb	0.75	
FP	Cs	5.78	
	Sr	1.77	
	Ba	3.76	
	Y	0.98	
	La	2.75	
	Се	5.38	
	Pr	2.50	00.40
	Nd	9.15	23.43
	Pm	0.07	
	Sm	1.84	
	Eu	0.37	
	Gd	0.39 ——	1
	Zr	7.89	
	Мо	7.60	
	Тс	1.67	
	Ru	5.31	
	Rb	0.91	
	Pd	3.77	
	Ag	0.19	
	Cd	0.32	
	Sn	0.22	
	Se	0.13	
	Те	1.14	
	FP Total	64.64	
СР	Fe	55.35	
Sc	Na	20.06	
TRU:T FP:Fis CP:Co SC: Sc	ransuranium Elements sion products rrosion products lvent Cleaning		

Calculated Composition of Elements in High Level Wastes

	Microwave	Absorption of ^N itrat	es
Classification	Group	Nitrate	Microwave absorption
D L	Lp2	RbNO ₃	x
L_		CSNO ₃	Х
	IIa	Sr(NO ₃) ₂	Х
		Ba(NO ₃) ₂	×
	IIIa	Y(NO ₃) ₃ • 6H ₂ O	0
		$La(NO_3)_3 \cdot 6H_2O$	0
		$Ce(NO_3)_3 \cdot 6H_2O$	Х
22		Pr(NO ₃) ₃ • 6H ₂ O	0
25		$Nd(No_3)_3 \cdot 6H_2O$	0
		$Sm(NO_3)_3 \cdot 6H_2O$	0
		Eu(NO ₃) ₃ • 6H ₂ O	0
		Gd(N♀)₃・6×2O	0
	IVa	$ZrONO_3)_2 \cdot 2H_2O$	×
	VIa	$Na_2MoO_4 \cdot 2H_2O$	×
	ΙΠΛ	$Pd(NO_3)_2$	0
	Ib	AgNe	0
	IIb	$Cd(NO_3)_2 \cdot 4H_2O$	0
	VIb	Te₂o₃ (OH)N♀	×
С Ч	IIIΛ	$Fe(NO_3)_3 \cdot 9H_2O$	0
S	Ia	NaNO	×

Thermal Decomposition of Nitrates Determined by TG/DTA

Classification	Group	Nitrate	Denigration Pattern	Stable Temperature Range for Oxide ([°] C) 600 800 1000	Final Chemical
FP	la	RbNO 3 CSNO 3	с с	Unstable I	Volatilization
	2a	Sr (NO ₃) ₂ Ba (NO ₃) ₂	B B		Sr O Ba O
	3 a 4a	Y $(NO_3)_3 \cdot 6H_20$ La $(NO_3)_3 \cdot 6H_2 O$ Ce $(NO_3)_3 \cdot 6H_20$ Pr $(NO_3)_3 \cdot 6H_20$ Nd $(NO_3)_3 \cdot 6H_20$ Sm $(NO_3)_3 \cdot 6H_20$ Eu $(NO_3)_3 \cdot 6H_20$ Gd $(NO_3)_3 \cdot 6H_20$ ZrO $(NO_3)_2 \cdot 2H_2O$	ם ם ם ם ם ם		Y 2 0 3 La 2 O 3 C e 0 2 Pr 2 O 3 Nd 2 O 3 Sm 2 0 3 Eu 2 O 3 Gd 2 O 3 Zr O 2
	6a	Na ₂ Mo O ₄ , 2H ₂ O	_		N a_2 M 0 0 ₄
	8 I b	Rh (NO 3) 3 Pd (NO 3) 3 AgNO 3	B 1 B1 B 1	Unstable	Rh ₂ O3 Pd O Ag
	2 b 6 b	Cd (NO 3) 2* 4H ₂ O Te 2O3 (OH) NO 3	B		Cd O TeO ₂
CP SC	8 I a	Fe (NO 3) 3• 9H 2O NaNO 3	A C	Unstable	Fe203 Volatilization

4

FP:Fission Products CP : Corrosion Products SC : Solvent Cleaning

226

Method of partitioning and Transmutation

- Partitioning : Dry Process with Pyrometallurgical Partitioning
- Transmutation :Commercial FBR with Metallic FuelImage: Sector StateImage: Sector StateImage

(Alloy of U-Pu-MA*-Zr with some amount of Impurity)**

- * MA : Np, Am, Cm
- ** Impurity : Mainly Rare Earth Elements

Comparison of Pyrometallurgical Process with Aqueous Process

Subject	Pyrometallurgical process	Aqueous process
Volume of process material per 1 t of spent fuel	About 501 as chlorides (including Na from solvent cleaning)	About 4001 as nitric acid solution [excluding Na from solvent cleaning)
Scale of process	Compact scale due to small volume of waste processed	Relatively large scale because waste is continuously processed as solution
Process temperature	500"-1000 C depending on process	Less than 100 C in most processes
Chemical form of TRU recoverd	Metal form	Oxide form
Purity of TRU recoverd	Containing some impurity of RE	High purity
Amount of secondary wastes produced	Smaller amount is expected due to no production of wastes such as radioactive organic solvent solvent salt, crucible and off gases are produced	Large amount of radioactive organic wastes is produced due to degradation of solvent and ion - exchange resin by radiation and acidification

229

