

Covariance in Ni-59 for JEFF 3.3 – A TMC based uncertainty approach

Henrik Sjöstrand*, **Petter Helgesson**^{1,2}, Dimitri Rochman³

¹Uppsala University, Uppsala, Sweden ²Nuclear Research and Consultancy Group NRG ³ Paul Scherrer Institute PSI, Villigen, Switzerland

*henrik.sjostrand@physics.uu.se

Sampling based evaluation and uncertainty quantification: TMC

Total Monte Carlo U.Q.

- Straight forward and transparent treatment of the uncertainty propagation
- Bias free uncertainty propagation, e.g. no linearization.
- Non Gaussian behavior in input and output can be modelled.
 - ✓ Higher moments included.
- More complete U.Q.
 - ✓ More correlations included

Creating Ni-59 random files

Consistency over the entire energy range

- For each file:
 - 1. Run TALYS with random parameters [1]
 - 2. Sample thermal xs_-
 - 3. Sample Harvey's resonance parameters
 - with exp. unc. + additional component approximating systematic errors in experiments (correlated to thermal exp.)
 - 4. Sample bound resonances and lower URR
 - Using URR parameters from the same TALYS run
 - 5. Adjust bound resonances to match thermal cross sections
 - If thermal cross sections unreachable: combination "unphysical" ⇒ start over at item 2
 - · Otherwise: file complete; continue

No experiments

Experiments

Experiments

[1] A. Koning and D. Rochman, "Modern Nuclear Data Evaluation With The TALYS Code System", Nuclear Data Sheets 113, 2841 (2012)

- Run TALYS with random parameters [1]
- Sample thermal xs
- 3. Sample Harvey's resonance parameters
 - with exp. unc. + additional component appreerrors in experiments correlated to thermal 6
- 4. Sample bound resonances and lower URR
 - Using URR parameters from the same TALY!
- 5. Adjust bound resonances to match thermal crc
 - If thermal cross sections unreachable: combine over at item 2
 - · Otherwise: file complete; continue
- Taken from TENDL 2015 parameters distribution.
- TENDL2015 Ni⁵⁹ parameter distribution is extrapolated from investigating the predictive power of default TALYS for isotopes where experimental data is available.*

*A. Koning, "Bayesian Monte Carlo for nuclear data evaluation", The European Physics
Journal A 51, 184 (2015)

- 1. Run TALYS with random parameters [1]
- Sample thermal xs.
- 3. Sample Harvey's resonance parameters
 - with exp. unc. + additional component appreerrors in experiments correlated to thermal ϵ
- 4. Sample bound resonances and lower URR
 - · Using URR parameters from the same TALY!
- 5. Adjust bound resonances to match thermal cro
 - If thermal cross sections unreachable: combine over at item 2
 - · Otherwise: file complete; continue

Sample the individual error components provides experimental correlations.

$$\sigma = \frac{C\mathcal{N}'}{C'\mathcal{N}} \frac{\epsilon'}{\epsilon} \frac{\Phi'}{\Phi} \sigma' \quad \text{or} \quad \sigma_{\text{tot}} = -\frac{\log\left(\frac{C\Phi'}{C'\Phi}\right)}{\mathcal{N}},$$

- \circ C= counts, $\epsilon=$ det. eff., $\mathcal{N}=\#$ nuclides/area, $\Phi=$ fluence
- Prime (') indicates reference measurement

Physical constrains included

- 1. Run TALYS with random parameters [1]
- 2. Sample thermal xs
- 3. Sample Harvey's resonance parameters
 - with exp. unc. + additional component approximating systematic errors in experiments (correlated to thermal exp.)
- 4. Sample bound resonances and lower URR
 - Using URR parameters from the same TALYS run
- 5. Adjust bound resonances to match thermal cross sections
 - If thermal cross sections unreachable: combination "unphysical" ⇒ start over at item 2
 - · Otherwise: file complete; continue

Positive (n,el)

Final thermal correlations

Resulting cross sections

Resulting cross sections

Consistent co-variances

- Community is still asking for covariances
 - Loss of information
- Computed from the random files

Consistent co-variances

Conclusion: New ⁵⁹Ni evaluation with covariances

- JEFF 2.2-3.2
 - No covariance information
- This file
 - Uncertainties propagated all the way from individual experimental error components
 - Combining resonances (exp), thermal data (exp), and TALYS (URR and fast range)
 - Uncertainties stored MF33
- Some information lost using co-variances
 - Use randomfiles

Acknowledgement

- Funding for this work was received from Swedish Center for Nuclear Technology SKC through M⁻ abil, from Uppsala University, and from Nuclear Research and Consultancy Group NRG.
- Special thanks to Jean-Cristophe Sublet (UKAEA, Abingdon, UK) for discussions on the ENDF format, to
- Denise Neudecker (LANL, Los Alamos, NM, USA) for discussions on experimental uncertainties, and to
- Arjan Koning (IAEA-NDS, Vienna, Austria) for general discussionson nuclear data uncertainties and TMC.