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Reminders, context and objectives 

 

 

Bayesian inference (Generalize least square and Monte-Carlo) 

 

 

Summary of recent CEA-Cadarache activities A few examples: 

 

 

Conclusions and Perspectives 
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Issues : 
Systematic experimental uncertainties  

Phenomenological Nuclear reaction model theories + Parameters 

Model defects (Epistemic Uncertainties) 

Integral experiment assimilation 

Common Physics from RRR to Continuum 

CROSS SECTIONS “KNOWLEDGE” 

EVALUATION IN THE RESONANCE RANGE AND HIGHER  
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Optical Models 

 

Statistical Model  

Transmission  Models 

R Matrix 

Nuclear reaction models 

Experiments (microscopic/integral) 

Bayesian inference technique 

Evaluation of uncertainties (variances and correlations) 

CROSS SECTIONS “KNOWLEDGE” 

EVALUATION IN THE RESONANCE RANGE AND HIGHER  
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Nuclear reaction models 

Experiments (microscopic/integral) 

Bayesian inference technique 

Evaluation of uncertainties (variances and correlations) 

CROSS SECTIONS “KNOWLEDGE” 

EVALUATION IN THE RESONANCE RANGE AND HIGHER  

 Microscopic Microscopic Microscopic 

Integral Integral Integral 
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Nuclear reaction models 

Experiments (microscopic/integral) 

Bayesian inference technique 

Evaluation of uncertainties (variances and correlations) 

CROSS SECTIONS “KNOWLEDGE” 

EVALUATION IN THE RESONANCE RANGE AND HIGHER  

 GLS GLS 

UMC 

BMC 
Microscopic Integral 

Microscopic Integral 

Microscopic 

Integral 



 

 

 

 

Breakthrough 

Covariances  [0eV;20MeV] 

Evaluation methodologies 

Understanding of discrepancies 

Covariance methodologies 

Reduction of Uncertainties 

 

 

 

 

 

                                 

                                

COVARIANCE MATRICES METHODOLOGIES 

General purpose 

Applied covariances 

????????????? 
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Bayesian inference (probability density): 

Formulation: 

New 
measurements 

Model 
parameters 

a priori 

information 

Estimation of the first two moments  

of the a posteriori distribution 
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EVALUATIONS AND UNCERTAINTIES 

GENERAL MATHEMATICAL FRAMEWORK 
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Model 



 

Estimation of a cost function 

(Generalized Chi-square) 

 

 

 

 

 

Bayesian inference (probability density): 

EVALUATIONS AND UNCERTAINTIES 

GENERAL MATHEMATICAL FRAMEWORK 
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Estimate 1st  two moments of                                

 with Monte-Carlo 

 

Sample of                                    

 

For each    associate a weight   

For ex. Likelihood  
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Maximum Entropy Principle 

Laplace approximation 

(Sammy,Refit,Conrad, SOK…) 

Monte-Carlo 

(UMC*, Forward-Backward, 

BMC**…) 

*R. Capote and D. Smith, Nucl. Data Sheets 109, 2768 (2008) 

**C. De Saint Jean et al., ND2016, EPJ-Web to be puplished (2017) 



 

 Solutions proposed and tested for the proper treatment of Syst. Exp. Uncertainties 

 Various marginalization methods 

 

 Bayesian Monte-Carlo as reference for evaluation     

 cross validation purposes for                       code : all algorithms implemented  

 

 Monte-Carlo in RRR/URR/Fast range: 

 Sampling prior is not a problem (LHS)getting posterior distributions is the issue 

 Full energy domain covariances  

 

 Integral data assimilation : 

 GLS/BMC 

 Models parameters as well as multigroup cross sections |  PAGE 10 

Summary of  recent CEA –Cadarache activities  

C. De Saint Jean et al, Nuclear  Data Sheet 123 (2015), 178-184 

E. Privas et al., ISRD15 proceedings EPJ-Web (2016) 

C. De Saint Jean et al., ND2016, EPJ-Web to be puplished (2017) 

C. De Saint Jean et al., ND2016, EPJ-Web to be puplished (2017) 

B. Habert et al., Nuc. Sci. Eng., 166, 276 (2010) + PhD Thesis 

C. De Saint Jean et al., Nuc. Sci. Eng., 161, 363 (2009). 

G. Noguere et al., Nuclear Data Sheets, 118 (2014) 349-352 

E. Privas PhD thesis  

C. De Saint Jean et al., EPJ Web (ND2016) to be published  

C. De Saint Jean, E. Privas et al., Nuclear Data Sheets, 118 (2014). 

P. Archier et al, Nuc. Data Sheets, 115 (2014).   



 

 Results of Marginalization fo Exp. Syst. uncertainties algorithm in  
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Various results (COMAC/JEFF/BMC)   

 

 BMC : Very Challenging example on 155Gd* : 

 Bayesian Monte-Carlo inference ok 

 Equivalent to Generalize Least Square 

 But  : time consuming / convergence issues 
 

 

 Covariances in JEFF3.2  and JEFF3.3 


239,240Pu, 235,238U, 23Na, 241Am …etc 

 CEA internal data base : COMAC 

239Pu 



 Full genuine evaluation for JEFF3.2 

New Microscopic experiment * 

Rouki et al. new (n,n’) at IRMM 

New evaluation**  

New RRR increased up to 2 MeV 

Resonance analysis of (n,n’) 

New Optical Model calculations 

 

Full energy range covered for uncertainties 

Syst. Exp. Uncertainties  

(2.6 % normalisation Rouki)  

RRR/Continum covered  

with cross correlations 
 

 

 

 

 

 

 

 

 

 

 

 

JEFF33=JEFF3.2 EVALUATION  

IN RRR AND CONTINUUM  23NA 

*Rouki et al., NIM in Physics Research Section A, 672 (2012) 

**Archier et al, Nuc. Data Sheets, 115 (2014).  



 

Nuclear model parameter adjustement  

 
 

 

 

 

 

Data assimilation of JEZEBEL* 
 

 

 

 

Bayesian inference with Monte-Carlo  

IDA and Fast energy range : 239Pu   

Metropolis find the same result as GLS even though change is very low (less than 0.5%) 



 
 Several kind of Nuclear Data 
 Several kind of Nuclear Reaction Models 
 Several kind of Experiments 
 Several kind of Covariance Matrices 
 
 Progress on Methodologies needed:  

o Data assimilation techniques 
o Adding physical constraints (On several models) 
 

 Progress on Experiments needed: 
o Reduction of systematic uncertainties for microscopic measurements 
o Integral experiments to target limited energy domain / reactions / isotopes 
 

 Progress on Nuclear models needed: 
o Microscopic models and/or a priori model uncertainties + model defects 
o URR, the accumulation of all pbs (processing, models, experiments) 
o Avoid compensations 
 

 Needs to define Covariance estimation benchmarks: 
o Fixed experiments 
o Fixed a priori (on parameters and/or cross section & uncertainties) 
o Incremental complexity 
o Compare covariance evaluation methodologies 
 

 

CONCLUSIONS 
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 Open a range of scientific activities  Beyond covariance matrices 

 On going : 

 Full covariance of U,Pu in JEFF:  simplify connection RRR/HE 

 Nuisance parameters (normalization, background, detectors efficiency, …) 

 Towards the Full Bayesian approach (experiment and theory)  

 Integral Data Assimilation and/or Transpositions to reactors neutronic uncertainties 

 Model deficiencies 

 Full Monte-Carlo (FMC) : from nuclear reaction models to Reactors 

  (please …. without format/files/processing !!!!!)  

 Is it worthwhile for evaluation?  Yes ! But … more to come  

 Local minima's ?  Elaborated Markov chains ? 

 Actual weak point : Gaussian likelihood is always chosen  

change of paradigm needed for representing experiments ?  

 Non linearities ?  ;  Non-gaussian posterior pdf’s? 
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Perspectives /open questions with Bayesian Monte Carlo 


