Re-analysis of the RRR/SEG Reactivity Measurements using TRIPOLI-4

Dietze [1]

Andrew Hummel 2016 WPEC Meeting [SG39] – Paris, France

www.inl.gov

- Rossendorfer Ringzonen-Reaktor (RRR)
 - Zero power Argonaut type reactor consisting of an annular core
 - Criticality reached December 16, 1962
 - Thermal driver fuel zone:
 - 60 %U₃O₈ / 40% AI (20% U-235)
 - Contained both outer and inner graphite reflectors
- Schnelles Einsatz-Gitter (SEG)
 - Fast insertion lattice deployed in 1972
 - Al or Fe matrix filled with varying pellets (unit cells)
 - 7 primary configurations
 - Initial focus on SEG 4 7: Measurements/data on structural materials and fission products

Integral experimental setup used to perform small sample reactivity measurements

Liewers [2]

- Annular driver zone consists of 24 rectangular cassettes with a max of 12 fuel sections of 6 pins in each cassette
 - 24 triangular graphite wedges fill in between; water moderated
- This zone is treated homogenously since the exact number of fuel sections varies (and is unknown); vary the radius to achieve criticality

Kampf & Liewers [4]

Dietze [3]

Pile Oscillator Method for Measurement

Dietze et al [5]

Lehmann et al [6]

- PUWO oscillator (Probe-Untergrund-Wechseloszillator)
- Pneumatically driven with a 20.48 second period, 80cm stroke
- Measured background and reactivity effect simultaneously
- Depends on reactor power, number of measured periods, and reproducibility $-\Delta k/k < 10^{-8}$ is achieved after 1000 cycles

Description of Measurements

- The pile oscillator method was used to measure reactivity effects
 - +/- 0.3 millicents accuracy of method
 - +/- 0.1 millicents inherent accuracy due to reactor drift behavior
- Oscillating AI tube filled with graphite and samples placed in graphite containers
 - Oscillated against dummy graphite containers "clean experiments"
- Neutron spectrum measurements [5], [10]
 - Boron ionization chamber detected the flux response
 - Proton recoil spec., Li-6 sandwich spec., stilbene scintillation, foil activation, fission reaction rates......
- Importance function measurements, verification [11]
 - Radioactive neutron sources (Ra-Be, Na-Be, Na-D, Sb-Be)
 - Pure scattering material (H, D, C)
 - Materials with similar behavior (Pb, Al, Bi)

SEG 6 insertion lattice; oscillator tube and small sample disks for EK-45

Lehmann et al [7]

"Reactivity and the total neutron population undergo oscillations with the same frequency as the oscillations of the sample" (Foell – 1972)

SEG 6 aluminum lattice; absorbing insertion zone and wire samples for EK-10

Lehmann et al [7]

"The sample reactivity is identical with the reactivity difference in the two oscillator positions" (Dietze – 1993)

Lehmann et al [8]

Spectral Characteristics

 Adjoint exhibits a depression around 10 keV with rapid increases to higher and lower energies

- Different pellet arrangements in the SEG lattice lead to both hard and soft neutron spectrums and different adjoint function shapes

 Obtain separate capture and scattering information
- Measured through pseudo-reactivity worths of different radioactive neutron sources in central channel

SEG Pellet Unit Cells

• SEG 4/5: energy-independent adjoint spectrum (reduce U-238 content)

 Slowing down effect disappears: i.e. the reactivity change is due only to capture

• SEG 6 EK-10/EK-45: monotonously rising adjoint function

 Hard neutron spectrum with a dominant, negative scattering effect: suitable for inelastic scattering data

SEG 6 \longrightarrow no unit cell (radial arrangement of nat U and 36% U)

• SEG 7A/7B: similar to SEG 4/5 but have softer neutron spectrums (PE)

- Capture and scattering effects are negative

PE=polyethylene

- SEG 4, 5, & 7 lattice
 - 72 holes in a six-angular arrangement
 - Central channel filled with graphite and sample material
 - Pellets grouped in unit cells fill holes
 - Graphite converter surrounded by annular driver fuel

• SEG 6 lattice

- Radial arrangement of 4 rings each having 12 channels
- Inner ring: 36% enriched
- Outer 3 rings: natural U
- Inner absorption zone:
 B₄C
- Experimental channel is either 5.0 or 1.2 cm in diameter
- Natural U converter surrounded by annular driver fuel

TRIPOLI-4 Continuous Energy MC code

- Capable of exact perturbation theory
 - Perform forward calculation with *perturbed cross-sections* to obtain flux
 - Collision sites saved; parameters stored (i.e. location, energy, direction, neutron weight, cross-sections)
 - Obtain the adjoint flux via the Iterated-Fission-Probability method with *reference, unpertubed cross-sections*
 - Previous collision sites used as external source; parameters again stored
 - Use quantities to perform continuous integration to determine reactivity effect

$$\Delta \rho = -\frac{\left\langle \phi_{ref}^{\dagger}, \left(\Delta M - \frac{\Delta P}{k_{ref}} \right) \phi_{pert} \right\rangle}{\left\langle \phi_{ref}^{\dagger}, P_{pert} \phi_{pert} \right\rangle}$$

	SEG 4	SEG 5	SEG 6_45	SEG 7A	SEG 7B
			k _{eff}		
MCNP6 ENDF/B-7.0	1.00058	0.99954 1.00040		1.00001	1.00060
ENDF/B-7.1	0.99943	0.99867	0.99961	0.99918	0.99982
TRIPOLI4 ENDF/B-7.1 (homogeneous)	0.99989	0.99920	1.00036	0.99979	1.00024
TRIPOLI4 ENDF/B-7.1 (heterogeneous)	0.99848	1.00034	0.99905	0.99952	1.00105
		0.000	$001 < 1\sigma < 0.0$	0004	
Δ ENDF/B-7.1 (homogeneous)	46 pcm	53 pcm	75 pcm	61 pcm	42 pcm
Homogeneous Critical Radius (cm)	7.82	7.45	9.17	8.50	7.98
Heterogeneous Critical # Fuel Plates	141	~ 138	~ 158	150	~ 145

Adjoint Discrepancies (linear plot)

TRIPOLI (hom) TRIPOLI (het) ERANOS

Forward Discrepancies (linear plot)

SEG4 CRWs; Normalized to B10

 $\frac{C}{E} = \frac{C_i * E_{ref} * A_{ref}}{E_i * C_{ref} * A_i}$

Sample	ID-	CRW exp.	C/E-values	C/E-values	C/E-values	Total	C/E-values	Calc.
Material	No.	(millicent/g)	70g	70g	33g	C/E	1968g	C/E
			JNC route	JNC route	ECCO/ERANOS	Error	TRIPOLI	Error
			JENDL-3.2	JEF-2.2	JEF-2.2	(%)	JEFF-3.2	(%)
B-10	105	- 1326 ± 20	1.000	1.000	1.000	2	1.000	0.6
U-235	925	+ 31.2 ± 2.0	0.950	0.980	0.965	10	0.741	0.6
U-238	928	- 7.2 ± 0.5	1.260	1.242	1.056	10	1.174	4.0
Та	731	- 37.0 ± 2.0	0.922	0.884	0.851	8	0.956	2.3
Мо	42	- 6.2 ± 0.5	1.208	1.153	0.906	12	1.135	3.9
Nb	413	- 8.5 ± 0.5	1.039	1.049	0.889	10	0.966	1.2
Mn	25	- 8.3 ± 0.6	0.826	1.214	0.957	11	1.170	2.6
Fe	26	- 0.52 ± 0.07	1.340	1.388	1.086	12	0.774	6.1
Cr	24	- 0.50 ± 0.03	1.167	1.291	1.076	10	0.733	5.2
Ni	28	- 1.00 ± 0.08	1.067	1.104	1.091	11	1.007	2.2
Cd	48	- 7.5 ± 0.5	1.296	1.502	1.046	10	1.138	2.5
Cu	29	- 4.2 ± 0.3	1.030	1.093	0.878	11	0.854	3.1
Zr	40	- 0.90 ± 0.08	1.192	1.051	0.911	12	0.884	3.4
W	74	- 15.0 ± 1.0	0.823	0.876	0.896	10	1.029	5.0
Mo-95	425	- 18.0 ± 1.0	1.121	1.151	0.913	10	1.068	5.2
Mo-97	427	- 11.0 ± 0.5	1.106	1.142	0.952	9	1.024	1.3
Mo-98	428	- 5.3 ± 0.4	0.856	0.891	0.773	12	0.693	2.4
Mo-100	420	- 3.5 ± 0.3	0.995	0.966	0.803	13	0.906	2.8
Rh-103	453	- 35.0 ± 3.0	1.096	1.132	1.056	12	1.077	2.3
Pd-105	465	- 30.5 ± 5.0	1.031	1.013	0.882	19	0.942	0.9
Ag-109	479	- 65.0 ± 5.0	0.777	0.846	0.809	12	1.027	4.8
Cs-133	553	-22.0 ± 2.0	1.000	0.985	1.038	13	1.138	2.9
Sm-149	629	- 105 ± 5.0	1.057	1.137	1.094	9	1.098	1.3
Eu-153	633	- 93.0 ± 5.0	1.009	0.992	1.108	10	1.014	1.0

SEG5 CRWs; Normalized to B10

 $\frac{C}{E} = \frac{C_i * E_{ref} * A_{ref}}{E_i * C_{ref} * A_i}$

Sample	ID-	CRW exp.	C/E-values	C/E-values	C/E-values	Total	C/E-values	Calc.	C/E-values	Calc.
Material	No.	(millicent/g)	70g	70g	33g	C/E	1968g	C/E	1968g	C/E
			JNC route	JNC route	ECCO/ERANOS	Error	TRIPOLI	Error		Error
			JENDL-3.2	JEF-2.2	JEF-2.2	(%)	JEFF-3.2	(%)	ENDF-7.1	(%)
B-10 ss	105	- 1230 ± 20	1.000	1.000	1.000	2	1.000	0.4	1.000	0.3
Та	731	- 31.5 ± 1.0	0.956	0.933	0.956	7	0.932	0.8	0.999	0.8
U-235	925	+ 31.2 ± 2.0	1.138	1.124	1.084	10	1.179	0.3	1.176	0.3
Mo	42	- 7.4 ± 0.5	1.031	0.984	0.964	10	1.056	2.2	1.108	2.3
Mn	25	- 12.0 ± 0.5	0.658	0.942	0.952	7	0.904	1.3	1.002	2.1
Cd	48	- 10.0 ± 0.5	1.070	1.214	1.215	9	1.102	2.4	1.173	2.6
Nb	413	- 10.0 ± 0.6	1.072	1.048	1.022	9	1.148	0.8	1.155	0.8
Cu	29	- 4.5 ± 0.5	1.174	1.214	1.119	14	0.997	1.9	1.179	1.8
Zr	40	- 1.05 ± 0.1	1.302	1.085	1.032	13	1.210	2.1	1.334	1.8
W	74	- 10.0 ± 0.5	0.918	1.019	1.085	8	1.002	2.7	-	-
Fe	26	- 0.7 ± 0.06	1.342	1.232	1.084	11	1.062	3.1	1.246	2.8
Cr	24	- 0.8 ± 0.06	1.037	1.095	1.032	10	0.840	2.4	0.828	2.3
Ni	28	- 1.3 ± 0.1	1.237	1.185	1.073	10	1.380	5.7	1.213	1.0
Со	279	- 20.0 ± 1.5	1.032	1.076	0.992	10	1.165	2.6	1.252	2.7
B-10 fp	105	- 1174 ± 20	1.000	1.000	1.000	2	1.000	0.4	1.000	0.3
Mo-95	425	- 14.5 ± 1.0	1.185	1.194	1.133	10	1.148	2.9	1.256	3.0
Mo-97	427	- 14.0 ± 1.0	0.980	0.994	0.954	10	0.950	0.8	0.962	0.8
Mo-98	428	- 5.0 ± 0.6	1.035	1.039	1.061	15	0.961	1.7	1.027	1.9
Mo-100	420	- 4.1 ± 0.5	0.996	0.923	0.888	16	0.983	2.2	0.951	2.0
Rh-103	453	- 27.0 ± 1.0	0.899	0.914	0.901	7	0.888	0.8	0.847	0.7
Pd-105	465	- 30.2 ± 1.0	1.117	1.077	1.064	7	1.058	0.5	1.057	0.5
Ag-109	479	- 31.5 ± 1.5	0.886	0.926	0.929	8	0.937	1.2	0.888	1.5
Cs-133	553	- 19.5 ± 2.0	0.909	0.912	0.926	13	0.942	1.1	0.896	1.1
Nd-143	603	- 16.0 ± 1.0	0.882	0.897	0.896	9	0.865	1.3	0.776	1.3
Nd-145	605	-18.0 ± 1.0	1.020	1.018	1.066	9	0.972	0.9	0.930	1.2
Sm-149	629	- 83 ± 5	1.023	1.121	1.191	9	1.105	1.9	1.097	2.3
Eu-153	633	- 75 ± 5	1.059	1.068	1.091	10	1.040	0.4	-	-

SEG6_EK45 CRWs; normalized to H1

Sample	ID-	CRW exp.	C/E-values	C/E-values	Total	C/E-values	Calc.	C/E-values	Calc.
Material	No.	(millcent/g)	70g	70g	C/E	1968g	C/E	1968g	C/E
			JNC route	JNC route			Error		Error
			JENDL-3.2	JEF-2.2	(70)	JEFF-3.2	(79)		(79)
Н	1	- 1099 ± 10	1.000	1.000	5	1.000	0.2	1.000	0.2
С	6	- 7.35 ± 0.06	0.918	0.959	8	1.041	0.2	1.053	0.2
B-10	105	- 95.9 ± 6.0	0.823	0.821	12	0.771	0.2	0.771	0.2
Mo	42	- 1.70 ± 0.04	0.935	0.898	7	0.960	0.3	1.000	0.3
Fe	26	- 1.22 ± 0.04	0.925	0.952	7	0.923	0.3	0.948	0.3
Cr	24	- 1.21 ± 0.04	0.887	0.977	7	1.014	0.4	1.046	0.4
Ni	28	- 1.55 ± 0.05	0.986	1.096	9	0.984	0.4	0.996	0.4
Al	13	- 2.00 ± 0.06	1.109	1.202	8	1.152	0.3	1.148	0.3
Zr	40	- 1.01 ± 0.03	0.918	0.859	8	1.003	0.3	0.949	0.3
Ti	22	- 1.93 ± 0.05	0.911	0.881	8			-	-
Cd	48	- 1.89 ± 0.05	0.802	1.026	7	0.993	0.3	1.004	0.3
Pb	82	- 0.32 ± 0.02	1.166	0.883	12	0.882	0.4	0.902	0.4
Bi	839	- 0.30 ± 0.02	0.911	0.986	12	0.933	0.4	0.949	0.4
Mg	12	- 3.01 ± 0.08	1.082	1.014	13	1.181	0.3	1.169	0.3
Be	4	- 14.04 ± 0.10	1.186	1.138	7	1.090	0.2	1.113	0.2
W	74	- 1.34 ± 0.03	0.926	0.912	9	0.914	0.3	-	-
Cu	29	- 1.45 ± 0.02	1.046	1.063	8	1.007	0.3	1.032	0.3
Au	79	-1.63 ± 0.07		0.919	9	0.895	0.3	-	-
Mn	25	- 1.53 ± 0.03	0.896	1.045	8	1.087	0.5	1.214	0.4
Та	731	- 2.15 ± 0.02	0.874	0.834	7	0.771	0.3	0.878	0.3
V	23	- 1.91 ± 0.05	0.934	1.034	9	0.974	0.5	1.006	0.4
Si	14	- 1.82 ± 0.09	0.893	1.049	11	1.007	0.3	1.067	0.3
Nb	413	- 1.96 ± 0.04	0.943	0.900	8	0.886	0.3	0.910	0.3
Со	279	- 1.25 ± 0.02	1.119	1.184	8	1.219	0.4	1.262	0.3
U-235	925	+ 10.9 ± 0.07	0.898	0.907	7	0.963	0.2	0.975	0.2
U-238	928	- 0.703 ± 0.04	0.906	0.881	12	0.989	0.3	0.999	0.3
Th	902	- 1.35 ± 0.04	0.858	0.832	9	0.867	0.3	0.892	0.3

 $\frac{C}{E} = \frac{C_i * E_{ref} * A_{ref}}{E_i * C_{ref} * A_i}$

SEG6_EK45 CRWs; normalized to C

 $\frac{C}{E} = \frac{C_i * E_{ref} * A_{ref}}{E_i * C_{ref} * A_i}$

Sample	ID-	CRW exp.	C/E-values	Total	C/E-values	Calc.	C/E-values	Calc.
Material	No.	(millcent/g)	33g	C/E	1968g	C/E	1968g	C/E
			JEF-2.2	(%)	JEFF-3.2	(%)	ENDF-7.1	(%)
				(79)		(/9		(/9
Н	1.0	- 1099 ± 10	1.071	5	0.960	0.2	0.950	0.7
С	6.0	- 7.35 ± 0.06	1.000	8	1.000	0.2	1.000	31.7
B-10	105.0	- 95.9 ± 6.0	0.896	12	0.741	0.2	0.732	0.3
Mo	42.0	-1.70 ± 0.04	0.913	7	0.922	0.3	0.950	2.3
Fe	26.0	$- 1.22 \pm 0.04$	0.916	7	0.886	0.3	0.900	2.8
Cr	24.0	-1.21 ± 0.04	0.915	7	0.974	0.4	0.993	2.3
Ni	28.0	- 1.55 ± 0.05	1.133	9	0.945	0.4	0.946	1.0
Al	13.0	- 2.00 ± 0.06	1.032	8	1.106	0.3	1.091	2.2
Zr	40.0	-1.01 ± 0.03	0.860	8	0.963	0.3	0.902	1.8
Ti	22.0	- 1.93 ± 0.05	0.921	8	-	-	-	-
Cd	48.0	- 1.89 ± 0.05	1.105	7	0.954	0.3	0.953	2.6
Pb	82.0	- 0.32 ± 0.02	0.913	12	0.848	0.4	0.857	4.5
Bi	839.0	- 0.30 ± 0.02	1.016	12	0.896	0.4	0.901	3.6
Mg	12.0	- 3.01 ± 0.08	1.094	13	1.134	0.3	1.110	23.4
Ве	4.0	- 14.04 ± 0.10	1.323	7	1.047	0.2	1.057	1.0
W	74.0	- 1.34 ± 0.03	0.942	9	0.878	0.3	-	-
Cu	29.0	- 1.45 ± 0.02	1.095	8	0.968	0.3	0.980	1.8
Au	79.0	-1.63 ± 0.07	0.963	9	0.860	0.2	-	-
Mn	25.0	- 1.53 ± 0.03	1.076	8	1.044	0.5	1.153	2.1
Та	731.0	- 2.15 ± 0.02	0.895	7	0.740	0.3	0.834	0.8
V	23.0	- 1.91 ± 0.05	1.016	9	0.935	0.5	0.955	1.7
Si	14.0	- 1.82 ± 0.09	1.207	11	0.968	0.3	1.013	4.6
Nb	413.0	- 1.96 ± 0.04	0.955	8	0.851	0.3	0.865	0.8
Со	279.0	- 1.25 ± 0.02	1.241	8	1.171	0.4	1.199	2.7
U-235	925.0	$+10.9 \pm 0.07$	0.978	7	0.925	0.2	0.926	0.3
U-238	928.0	- 0.703 ± 0.04	0.923	12	0.950	0.3	0.949	2.1
Th	902.0	-1.35 ± 0.04	0.865	9	0.833	0.3	0.847	1.5

SEG7A CRWs; normalized to B10

Sample	ID-	CRW exp.	C/E-values	C/E-values	C/E-values	Total	C/E-values	Calc.	C/E-values	Calc.	C/E-values	C/E-values
Material	No.	(millicent/g)	70g	70g	33g	C/E	1968g	C/E	1968g	C/E	26g	CE
	_		JNC route	JNC route	ECCO/ERANOS	Error	TRIPOLI	Error	TRIPOLI	Error	TRIPOLI	TRIPOLI
			JENDL-3.2	JEF-2.2	JEF-2.2	(%)	JEFF-3.2	(%)	ENDF-7.1	(%)	JEFF-3.2	JEFF-3.2
D 40	405	050 + 40	1.000	1.000	4.000	2	1 000	0.2	1.000	0.4	1.000	1.000
B-10	105	-850 ± 10	1.000	1.000	1.000	2	1.000	0.3	1.000	0.4	1.000	1.000
С	6	- 1.9 ± 0.05	1.035	1.041	1.091	6	1.119	0.4	1.128	0.6	1.122	3.092
U-235	925	+ 28.0 ± 3.0	1.149	1.144	1.150	13	1.142	0.4	1.137	0.5	1.149	1.118
Та	731	- 26.0 ± 1.0	0.868	0.867	0.928	7	0.899	0.9	0.935	1.2	0.886	0.887
Cd	48				1.304	15	-	-				
Mo-95	425	- 16.8 ± 2.5	0.940	1.050	0.960	18	1.006	2.7	0.968	2.9	0.984	0.614
Mo-97	427	- 8.0 ± 0.6	0.956	0.982	0.961	11	0.993	0.9	1.010	1.1	0.982	0.972
Mo-98	428	- 2.7 ± 1.0	1.133	1.164	1.141	40	1.222	1.7	1.192	1.9	1.173	1.580
Mo-100	420	- 8.1 ± 1.0	0.300	0.286	0.471	13	0.306	1.7	0.281	1.8	0.300	0.859
Rh-103	453	- 15.0 ± 2.0	1.168	1.230	1.118	16	1.141	1.2	1.092	1.3	1.110	1.053
Ag-109	479	- 36.0 ± 1.5	0.820	0.901	0.894	7	0.853	1.9	0.838	2.3	0.835	0.881
Sm-149	629	- 70.0 ± 3.0	1.751	1.337	1.498	7	1.357	1.6	1.299	1.8	1.346	1.214

$$\frac{C}{E} = \frac{C_i * E_{ref} * A_{ref}}{E_i * C_{ref} * A_i}$$

SEG5 Scattering to Total Reactivity Ratios

Sample	Scat./ Tot. (%)	Scat./ Tot. (%)	Scat./ Tot. (%)	Scat./Tot. (%)	Elas./Tot. (%)	Calc.	Inel./Tot. (%)	Calc.	Scat./Tot. (%)
Material	JNC route	JNC route	JNC route	Europ. scheme	TRIPOLI	Error	TRIPOLI	Error	TRIPOLI
	70=>18g	70=>18g	70g	1968,172,33=>33g	1968g	(%)	1968g	(%)	1968g
	JENDL-3.2	JEF-2.2	JENDL-3.2	JEF-2.2	JEF-3.2		JEF-3.2		JEF-3.2
B-10 ss	+0.10	+0.08	+0.01	-0.012	-0.025	2.6	-0.001	8.6	-0.026
Та	+0.45		+0.26	-0.02	-0.343	21.5	-0.169	1.0	-0.512
U-235	-0.17	-0.19	-0.12	+0.008	-0.007	33.6	-0.098	0.4	-0.104
Mo	+2.5	+2.9	+1.5	+0.12	1.332	18.6	1.202	2.2	2.533
Mn	+9.3	+4.5	+3.9	+0.12	4.912	22.0	-0.554	1.4	4.358
Cd	+1.2		+0.76	-0.14	1.065	9.4	0.942	2.4	2.007
Nb	+1.6		+0.97	-0.05	0.059	59.3	-0.897	0.8	-0.837
Cu	+5.4	+4.8	+1.5	-0.61	7.342	4.5	1.240	1.9	8.582
Zr	+7.5	+9.1	+4.8	-0.27	8.390	5.8	2.860	2.1	11.250
W	+3.8		+1.2	+0.10	2.309	33.7	0.647	2.8	2.956
Fe	+19.6	+20.8	+9.7	-8.0	3.401	24.1	6.569	3.2	9.971
Cr	+12.8	+14.4	+2.7	-12.3	4.165	18.5	4.743	2.6	8.909
Ni	+11.2	+11.9	-4.5	-11.1	4.296	17.4	1.511	5.8	5.807
Со	+1.5		+2.9	+0.21	3.043	43.4	-0.271	2.6	2.773
Mo-95	+1.1		+0.75	+0.64	0.957	27.2	-0.624	2.9	0.333
Mo-97	+1.3		+0.77	-0.12	0.058	44.6	-1.114	0.8	-1.056
Mo-98	+6.3		+2.5	+0.01	-2.954	6.8	-1.851	1.7	-4.804
Mo-100	+3.4		+2.9	-0.12	5.606	9.8	-2.635	2.2	2.971
Rh-103	+0.6		+0.38	-0.07	-0.161	14.6	-0.460	0.8	-0.622
Pd-105	+0.4		+0.28	-0.07	0.081	10.9	-0.438	0.5	-0.357
Ag-109	+0.5		+0.31	-0.03	0.020	133.0	-0.361	1.2	-0.341
Cs-133	+0.6		+0.43	-0.03	0.505	16.0	-0.284	1.2	0.221
Nd-143	+1.0		+0.55	+0.99	-0.204	161.8	-0.240	1.3	-0.444
Nd-145	+2.0		+0.44	+0.81	-1.544	15.9	-0.387	1.0	-1.932
Sm-149	+0.2		+0.09	+0.02	0.055	54.4	-0.090	1.9	-0.035
Eu-153	+0.2		+0.10	-0.01	-0.037	15.3	-0.101	0.5	-0.138

SEG6_EK45 reactivity contributions

Sample	JNC r	oute wi	th JENDI	-3.2	ECCO	ERANO	S with J	EF-2.2	TRIPOL	RIPOLI with JEFF-3.2 (1		
Material	Capture	El.	Inel.	Fission	Capture	El.	Inel.	Fission	Capture	El.	Inel.	Fission
	(%)	Scatt.	Scatt.	(%)	(%)	Scatt.	Scatt.	(%)	(%)	Scatt.	Scatt.	(%)
		(%)	(%)			(%)	(%)			(%)	(%)	
Н	0.004	100.0	0.0		0.	100	0.		0.04	99.92	0.04	
С	0.46	98.4	1.2		0.4	98.6	1.0		0.36	98.46	1.19	
B-10	89.6	9.8	0.6		90.4	9.4	0.2		87.96	11.80	0.24	
Mo	25.6	11.5	62.7		23.2	12.8	64.0		23.72	12.93	63.28	
Fe	9.0	25.5	65.5		6.1	25.9	68.0		7.13	32.19	60.66	
Cr	6.5	35.5	58.1		5.7	33.2	61.1		5.12	43.92	63.15	
Ni	32.7	37.7	30.1		35.9	39.6	24.5		30.30	36.14	33.55	
Al	3.5	68.6	28.0		3.8	68.0	28.2		3.72	64.83	31.45	
Zr	10.0	23.9	66.0		7.6	28.5	63.9		8.62	29.17	62.09	
Ti	6.5	45.3	48.2		6.3	51.4	42.3					
Cd	39.5	6.9	53.3		32.8	7.6	59.6		32.33	6.61	61.04	
Pb	2.7	11.8	84.2		3.8	20.2	76.0		3.10	17.30	79.22	
Bi	4.2	14.7	79.7		4.6	20.1	75.3		2.57	19.56	77.33	
Mg	3.4	73.3	23.4		2.3	76.7	21.0		3.34	75.73	20.93	
Be	6.4	79.9	13.7		6.1	82.1	11.8		6.37	96.74	0.35	
W	24.8	3.6	70.7		26.7	5.2	68.1		23.92	4.46	71.37	
Cu	18.6	21.7	59.8		18.2	26.6	55.2		16.42	26.22	57.35	
Au					43.3	3.7	53.0		39.64	3.51	56.78	
Mn	6.8	32.2	61.0		8.9	30.5	60.6		5.46	27.54	66.97	
Та	50.0	2.3	47.4		49.7	2.8	47.5		42.64	3.16	54.04	
V	5.0	45.7	49.4		3.4	43.5	53.1		3.90	49.04	47.05	
Si	6.1	68.4	25.7		6.0	74.0	20.0		5.66	71.67	22.67	
Nb	28.3	12.1	59.6		28.4	57.7	13.9		27.30	13.14	59.51	
Со	9.5	28.9	61.7		8.1	31.5	60.4		7.65	32.58	59.75	
U-235	6.8	0.3	6.0	113.2	6.5	0.3	6.1	112.9	5.34	0.31	7.05	112.73
U-238	57.7	5.4	115.7	81.0	62.8	5.0	113.8	81.6	48.12	7.14	108.64	64.37
Th-232	38.6	3.1	65.5	8.7	48.5	2.7	56.6	7.8	38.84	3.36	64.47	6.96

SEG7A Scattering to Total Reactivity Ratios

Sample	ID-	Elas./Tot. (%)	Calc.	Inel./Tot. (%)	Calc.	Scat./Tot. (%)	Elas./Tot. (%)	Calc.	Inel./Tot. (%)	Calc.	Scat./Tot. (%)	Elas./Tot. (%)	Calc.	Inel./Tot. (%)	Calc.	Scat./Tot. (%)
Material	No.	TRIPOLI	Error	TRIPOLI	Error	TRIPOLI	TRIPOLI	Error	TRIPOLI	Error	TRIPOLI	TRIPOLI	Error	TRIPOLI	Error	TRIPOLI
		1968g JEF-3.2	(%)	1968g JEF-3.2	(%)	1968g JEF-3.2	26g JEF-3.2	(%)	26g JEF-3.2	(%)	26g JEF-3.2	JEF-3.2	(%)	JEF-3.2	(%)	JEF-3.2
				01.0.1										•=••=		
B-10	105	0.229	3.5	0.003	6.8	0.23	0.225	1.0	0.003	1.8	0.228	1.297	49.5	0.008	99.0	1.305
С	6	98.780	6.5	0.275	21.8	99.06	98.655	1.2	0.322	4.4	98.978	99.322	270.9	0.027	3641.2	99.349
U-235	925	-0.059	55.9	-0.456	1.5	-0.51	-0.034	4.6	-0.445	1.3	-0.479	0.081	3736.8	-0.674	65.8	-0.593
Та	731	1.078	30.0	0.810	3.3	1.89	0.145	12.9	0.804	3.3	0.949	12.135	92.1	1.143	51.4	13.278
Cd	48	2.811	43.9	3.027	9.4	5.84	0.375	10.7	2.845	10.3	3.221	-62.130	193.8	3.290	170.4	-58.840
Mo-95	425	5.559	48.3	1.451	10.6	7.01	0.472	12.1	1.611	8.7	2.082	8.928	607.9	1.311	131.9	10.239
Mo-97	427	1.278	33.7	4.025	3.3	5.30	0.568	3.9	3.995	3.2	4.563	11.613	235.8	4.868	59.9	16.481
Mo-98	428	13.607	32.0	6.560	8.1	20.17	7.657	22.1	6.956	6.4	14.613	67.130	74.9	5.987	53.2	73.118
Mo-100	420	-1.492	324.1	10.932	7.5	9.44	1.837	6.2	10.117	5.7	11.954	75.073	102.6	1.373	116.6	76.447
Rh-103	453	1.157	29.3	0.942	7.0	2.10	0.200	4.4	0.820	8.0	1.020	15.894	76.2	0.769	67.0	16.662
Ag-109	479	-0.167	353.9	0.818	7.6	0.65	0.115	9.3	0.713	7.5	0.828	6.263	117.9	0.678	63.1	6.940
Sm-149	629	-1.032	24.8	0.267	5.0	-0.76	0.044	6.7	0.259	5.3	0.303	6.833	117.8	0.358	69.0	7.192

U-235 Sensitivities (JEFF-3.2/TRIPOLI)

U-238 Sensitivities (JEFF-3.2/TRIPOLI)

Fe-56 Sensitivities (JEFF-3.2/TRIPOLI)

Sm-149 Sensitivities (JEFF-3.2/TRIPOLI)

Rh-103 Sensitivities (JEFF-3.2/TRIPOLI)

Th-232 Sensitivities (JEFF-3.2/TRIPOLI)

U-235 Sensitivities (JEFF-3.2/TRIPOLI)

Sm-149 Sensitivities (JEFF-3.2/TRIPOLI)

Energy (eV)

Conclusions and Ongoing Work

- It is important to keep in mind that this analysis using the IFP method in TRIPOLI is new and relatively untested;
 - Very much a 'first of a kind' analysis
- Accurate geometric models were developed in TRIPOLI
 < 100 pcm difference with MCNP for critical configurations
- Forward and adjoint fluxes compare very well between homogeneous and heterogeneous configurations in TRIPOLI
 - Differences exist with ERANOS calculations; most likely due to the older JEF-2.2 cross-section libraries
- Central Reactivity Worths and C/E values are comparable with previous work

Conclusions and Ongoing Work

- Compile results for SEG 6_EK10 and SEG 7B in progress
 - No previous analysis of 7B measurements
- Examine additional data libraries in TRIPOLI (ENDF-7.0, JENDL?)
- Use ERANOS-2.4 for cross-comparison and examine sensitivity coefficients

 in progress
- Possibly examine SEG3 & STEK experiments
- Finally....propose cross-section recommendations once all TRIPOLI & ERANOS calculations are complete

Acknowledgments

- Pierre Leconte
- Gerald Rimpault
- Giuseppe (Pino) Palmiotti
- Massimo (Max) Salvatores
- John D. Bess

Idaho National Laboratory

References

- 1. Dietze K., "Integral Test of FPND by Reactivity Measurements in Reactor Configurations with Specially Designed Adjoint Spectra" FZR Preprint 92 02, May 1992 (NEA-NSC-DOC-92-9).
- 2. Liewers P, "Reaktorphysikalische Forschungen in der DDR" Sitzungsberichte der Leibniz-Sozietat, 89(2007), 39-54.
- 3. Dietze K. "The Rossendorf RRR/SEG Facility," LEPH-93-230, CEA Cadarache 1993.
- 4. Kampf T., Liewers P., "Der Rossendorfer Ringzonenreaktor (RRR) ein Instrument fur reaktorphysikalishce Untersuchungen," Kernenergie 6 Jahrgang, P. 300 305, Heft 7 1963.
- 5. Dietze K., Faehrmann K., Huettel G., Hansen W., Kumpf H., Lehmann E., "Neutron Absoption Data Analysisby Means of Integral Experiments in Fast Critical Facilities," Kerntechnik 53/2, p. 143 149, 1988 (K-1988).
- 6. Lehmann E., Dietze K., Fahrmann K-H., Huttel G., Kumpf H., "Ergebnisse von Probenreaktivitatsmessungen von Konstruktionsmaterialien und Spalt-produktnukliden in den schnellen kritischen Anordnungen SEG-IV und SEG-V," ISSN 0138-2950, November 1988 (ZfK-656).
- 7. Lehmann E., Hansen W., Huettel G., Kumpf H., Richter D., "Investigations in a Fast Reactor Assembly with a Strongly Energy-Independent Adjoint Function," ISSN 0138-2950, December 1990 (ZfK 729).
- 8. Lehmann E., Huttel G. Krause H., Kumpf H., "A Fast Critical Reactor Assembly with Strong Energy Dependence of Adjoint Flux," Kernenergie 34/1 p. 9-12, 1991 (Ke34-1p9-1991).
- 9. Huttel G., Krause H., "Ein pneumatishes Steuerungssystem fur schnelle vertikale Rechteckbewegungen groBerer Lasten," Kernenergie 18, Jahrgang, Heft 11/1975.
- 10. Rowlands J. L., Smith R. W., Stevenson J. M., Taylor W. H., "Convergence of Integral and Differential Cross-Section Data for Structural Materials," United Kingdom Atomic Energy Authority, Nuclear Data for Science and Technology, 85-97, 1983.
- 11. Albert D., Fahrmann K., Lehmann E., Seifert E., "Investigation of a moderated Sb-Be photoneutron source and its application to the determination of the neutron importance function," Nuclear Instruments and Methods in Physics Research, Vol. 185, Issues 1-3, p. 387-392, June 1981.
- 12. Dietze K., Kumpf H., "Eine Analyse der Kerndaten von Spaltprodukten durch Reaktivitaetsmessungen in schnellen Reaktorkonfigurationen mit enerie-unabhaengiger Einflussfunftion, Kernenergie 34, 1, p.1, 1991 (Ke34-1-1991).
- 13. Dietze K., "Zur Normierung und Genauigkeit von integralen Experimenten im SEG, Report RPV 1/89 Research Center Rossendor (1989).

Total C/E error estimated with partial errors

- Primary
 - Statistical error in the measurement of both the sample and reference materials
- Secondary
 - Extrapolation error to infinitely dilute CRW values of both the sample and reference materials
 - Error associated with the derived experimental CRW value from the molecular sample used
 - Cross-section uncertainty of reference material
 - Additional uncertainties in compositions and moisture
- More info, see references [12], [13] both in German

Outer Reflector

Kampf & Liewers [4]

Pneumatic Oscillator

