The NJOY Nuclear Data Processing System - Current Status and Future Plans

A. C. (Skip) Kahler & R. E. MacFarlane
akahler@lanl.gov

T-2, Nuclear & Particle Physics,
Astrophysics & Cosmology Group
Theoretical Division
Los Alamos National Laboratory

Presented at the OECD/NEA Workshop on Processing Tools for Evaluated Nuclear Data Libraries

November 2008
The base version of NJOY99 is distributed by ORNL’s RSICC and the NEA Data Bank.

Updates are maintained at Los Alamos and distributed freely at http://t2.lanl.gov/codes/njoy99.

- Machine dependent updates and sample makefiles for a variety of compilers and hardware/OS configurations are included here.

- The current version of the code is 99.259.

- In-house updates through 99.279 will be posted at the end of November.

A new base version, NJOY2008, is nearing completion with distribution to ORNL’s RSICC anticipated by the end of 2008.
NJOY - Introduction

NJOY is a collection of discrete programs that are run in sequence to accomplish a specific goal.

- Most common usage includes
 - Creation of continuous energy cross section files in “ace” fast format for use with the LANL MCNP(X) continuous energy Monte Carlo programs.
 - Creation of scattering kernel (“ace” thermal) files.
 - Processing covariance data.
 - Version 2.3 of ERRORJ was merged into NJOY99.259; several of the new updates described below expand this processing capability.
 - Data visualization.
 - NJOY’s PLOTR/VIEWR modules can be used to create postscript formatted plots.
 - Can display continuous energy cross sections, multigroup cross sections, angular distributions, secondary energy spectra, correlation matrices and uncertainties.
NJOY - Introduction

Code Management

RSICC or NEA Data Bank distribution includes the basic, uncompiled f77 NJOY99 source code, “src”; the source code for an updating utility program, “upd.f”; various test problem i/o files and various sample makefiles.

To create an executable

- Create an executable version of upd.
- Download the latest available update and appropriate machine dependent patches from http://t2.lanl.gov/codes/njoy99.
- Merge the update file and machine dependent patch files, creating “upn”.
- With “scr” and “upn” in the same directory, execute upd.
 - Output will be a series of *.f files for the latest version of NJOY99
 - Compile and link these files to create the NJOY executable.
NJOY - Introduction

Code Management (con’t)

- Changes to NJOY99 embodied in these patches mean that the sample test problem files accompanying the original distribution are no longer valid.
- Obtain the latest test files from the “t2” web site.
- Small differences are acceptable
 - Test10 which uses random numbers will likely produce different answers (a deficiency that will be rectified in NJOY2008) as a function of User platform.
NJOY - Introduction

NJOY interprets a combination of User input instructions plus an ENDF-formatted evaluated data file.

- NJOY output files conform closely to basic ENDF-formatting rules.
 - A pointwise cross section file output from a given NJOY module is termed a “pendf” file, and is suitable for input to the next NJOY module in the User processing sequence.
 - A groupwise cross section file output by NJOY’s GROUPR module is termed a “gendf” file. While not a formal endf-formatted file, subsequent NJOY modules that further process groupwise data can read this file.
 - ERRORJ’s output file contains a combination of groupwise and covariance matrices that can be read by NJOY’s COVR module which generates correlation matrix, cross section and cross section uncertainty plots.
NJOY – Create Fast ACE Files

Creation of fast ACE files:

- **reconr**: expand file2/file3 data to create linearly interpolable continuous energy cross sections.
- **broadr**: doppler broaden reconr (or previous broadr) output to the desired temperature.
- **unresr** (optional): calculate unresolved resonance cross sections.
- **heatr** (optional): calculate energy deposition and damage “cross sections”.
- **purr**: calculate unresolved resonance probability tables.
- **gaspr** (optional): calculate gas (^1h, ^2h, ^3h, ^3he and ^4he) production cross section.
- **acer**: recast output from previous NJOY modules into MCNP fast “ace” format.
NJOY – Fast ACE Plots

Doppler broadened continuous energy, linearly interpolable cross sections.
NJOY – Fast ACE Plots

Example of inelastic cross section plotting.
NJOY – Fast ACE Plots

- MF4, MT2 (elastic scattering) angular distributions.
NJOY – Fast ACE Plots

First inelastic level angular distributions – clearly not isotropic which may be an approximation in older codes.
NJOY – Fast ACE Plots

Secondary neutron emission spectra.
NJOY – Create Thermal ACE Files

Creation of thermal ACE files

- leapr (optional): use this module to create mf7 thermal scattering kernel data, if not available from a previously generated endf-formatted source.
- thermr: use this module to process leapr output or an endf-formatted thermal kernel input tape.
- acer: convert thermr output to MCNP thermal ace format.
NJOY – Thermal ACE Plots

- Hydrogen bound in water, inelastic scattering.
NJOY – Fast ACE Plots

- Free-gas hydrogen
- Note difference in elastic scattering at low energy.
NJOY – Covariance Processing

- **reconr**: expand file2/file3 data to create linearly interpolable continuous energy cross sections.
- **broadr**: doppler broaden reconr (or previous broadr) output to the desired temperature.
- **unresr**: calculate unresolved resonance cross sections.
- **groupr**: calculate group averaged cross sections, angular distributions and emission spectra.
- **errorj**: process mf31, mf32, mf33, mf34 and mf35 covariance data.
- **covr**: create plot file for mf31 (nu), mf33 (cross sections), mf34 (mu-bar) or mf35 (spectra), their uncertainties and correlation matrices;
- **viewr**: convert covr plot file to postscript format.
Covariance Plots – MF31

- New plotting features
 - Uncertainty in data on one frame.
 - Data on the second frame.
 - Use log-log scale for the ordinate when min-to-max ratio is large (currently 10x).
 - Additional color scale so virtually all correlation matrix elements are displayed.

- These data are from JENDL-3.3 ^{238}U.
Covariance Plots – MF33

- **New plot feature**
 - Warn user when uncertainty data are truncated to fit within the fixed ordinate axis limits.

- Unexpected discontinuities, especially in a derived cross section uncertainty, may indicate a deficiency in the underlying covariance data.
Covariance Plots – MF33

- Axis limits are adjusted to minimize plotting of “zero” data.
Covariance Plots – MF33

Again, some features seem unphysical.
Covariance Plots – MF34

- Plotting of mu-bar uncertainty (mt251) is new in NJOY99.279.

- This plot is a 618-group calculation for JENDL-3.3 238U.
Covariance Plots – MF35

Plotting of fission spectrum uncertainty (mf5, mt18) is new in NJOY99.279.

This plot is a 618-group calculation for JENDL-3.3 238U.
NJOY – Visualization

Visualization

- NJOY produces a predefined suite of plots, on user option, from the groupr, acer and covr modules.

- User’s can also create plots using the plotr and viewr modules.
 - Example follows.
NJOY – PLOTR/VIEWR

- User input to PLOTR to set axis limits, specific MT’s, plot title, curve legend, individual curve colors and individual curve line texture.
- This plot generated from GROUPR output.
NJOY2008

All NJOY99 coding now converted to Fortran 90/95.
 No more machine-dependent updates!
 Can use Fortran 90/95 intrinsic functions to define these variables.
 No more “set sw” to get real*8 precision – now use “kind” definition.

Historical test problems reproduce NJOY99 results.
 New coding includes a “physics” module with various constants collected in one location for easy upgrade.

A new User manual will accompany the new code.
 No more references to NJOY91!
NJOY – Future Developments

Future Developments (think about this for Friday’s NJOY User Group Meeting)

- Continuing evolution of Covariance formats
 - Scattering radius uncertainty (Rochman/Chiba & revised ERRORJ).
- An NJOY/CINDER module?
 - A new version of CINDER90 is near release and will contain a room temperature, 63-group, ENDF/B-VII.0 based cross section library.
 - May also contain JEFF-3.1 and JENDL-3.3 based libraries.
 - Is there User demand to make their own CINDER90 library?
- Calculate elastic scattering angular distributions from resolved resonance parameters.
 - This capability exists but is not yet tested nor formally implemented in NJOY2008 for LRF=7 (Limited Reich-Moore) evaluations.
 - Recent data testing of selected ICSBEP benchmarks indicates a large sensitivity in calculated eigenvalue for systems with large axial reflectors as a function of elastic scattering angular distributions.
NJOY – Future Developments

Future Developments (con’t)

- Additional training & web page upgrades.
 - Half-day tutorials at recent technical society meetings have been well attended; *may* next occur during the ANS general meeting in Atlanta.
 - On-line training was partially implemented for NJOY97 and remains relevant, but is incomplete.

- When should NJOY recognize a deficiency in the basic input file and automatically make corrections?
 - int=2 → int=22 for interpolation of emission spectra.
 - ???

- ???

Funding for future developments?