Status of the ^9Be-EFF-3.0/NMOD=3 data processing with NJOY/ACER

Dieter Leichtle, Ingrid Schmuck, Ulrich Fischer
Forschungszentrum Karlsruhe GmbH
Institut für Reaktorsicherheit IRS
Recent evaluation by V. Pronyaev, S. Tagesen, H. Vonach (EFF-DOC-689)

- Calculation and adjustment of neutron emission channels as partial (n,2n) cross sections
- Including energy-angle distributions (and covariances)
- 16 channels for neutron emission, 17 for alpha emission
\(^9\text{Be EFF3.0/NMOD=3}\)

- ENDF-formatted data
 - Partial cross sections are given as MT875 to MT890
 - Energy-angle distributions are stored in subsections of MF6 for neutrons and alphas (LAW=7), multiplicity 2 is used explicitly
 - Included also the rather sharp neutron emission line of \((n,n''x)\) as a separate distribution in MT876
 - The now redundant \((n,2n)\)-cross section (MT16) is given as a full consistent sum of the individual channels
Objective

- Use of individual neutron emission channels in MC transport and sensitivity calculations
- ENDF-formatted data as given in MT875-890 (file 3 and 6) should be processing into a ACE-file for subsequent use in MCNP
- Present status of NJOY/RECONR and ACER does not allow to treat these data
Processing with ACER

- PENDF-output of RECONR added now by inclusion of MT875-890
- ACER dosimetry processing (only MT3 data) available by inclusion of MT875-890 in UNIONX
- ACER fast data processing (transport)
 - Allow for neutron emission and other particle emission in MT875-890
 - Increase ACE storage significantly
 - Allow for combining both neutron angular distributions in MT876 (option newfor=1 to use arbitrary cosine bins)
Processing with ACER

- **MT876: $^9\text{Be}(n,n''n2\alpha)$**
 - 2^{nd} exited Level (2.43 MeV), $\Gamma=770\text{eV}$
 - *Contributes between 50% at low energy and 20% at high energy to total neutron production cross section*
 - *Branches to ground state of ^8Be (7%) or three-body-break-up (93%)*
 - Angular distributions of inelastically scattered neutron and of second neutron are given independently
 - *ACE-format allows only single angular (but multiple energy) distributions*
Angular distribution of neutrons from MT876
\((E = 14 \text{ MeV})\)

- ○ inelastically scattered neutron
- ● second neutron
- ✱ all neutrons

\(\text{pdf [a.u.]}\)

\(\mu\)
Energy distribution of inelastically scattered neutron from MT876 (E = 14 MeV)
Energy distribution of second neutron from MT876
(E = 14 MeV)
Processing with ACER

- MT16 (n,2n)
 - is now redundant and has to be removed for transport calculations
 - could be easily achieved by elimination of all entries in the ENDF-file (includes MF1 directory, MF3 cross section, and MF6 distributions)

- Total size of ACE-file: 33 MB
 total size of ENDF-file: 17 MB
Checking the ACE-file

- Completeness
- Basic reaction parameters
- Cross sections (MF3) including total
- Angular distributions; MT876 after adding both neutron contributions
- Energy distributions
- Alpha-production: yields, contributing MTs, angular and energy distributions
- Todo: Application to MCNP-transport benchmarks
Reactions in ACE-Output

<table>
<thead>
<tr>
<th>reaction</th>
<th>mt</th>
<th>tyr</th>
<th>lsig</th>
<th>land</th>
<th>ldlw</th>
<th>emin</th>
<th>emax</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000000E-11</td>
<td>2.000000E+01</td>
<td>16</td>
</tr>
<tr>
<td>(n,2n)</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1.748832E+00</td>
<td>2.000000E+01</td>
<td>-1.572800E+00</td>
</tr>
<tr>
<td>MT875</td>
<td>875</td>
<td>2</td>
<td>277</td>
<td>4282</td>
<td>95909</td>
<td>2.600000E+00</td>
<td>2.000000E+01</td>
<td>-1.684000E+00</td>
</tr>
<tr>
<td>MT876</td>
<td>876</td>
<td>2</td>
<td>466</td>
<td>5891</td>
<td>191785</td>
<td>2.701304E+00</td>
<td>2.000000E+01</td>
<td>-2.429400E+00</td>
</tr>
<tr>
<td>MT877</td>
<td>877</td>
<td>2</td>
<td>644</td>
<td>7232</td>
<td>215199</td>
<td>3.091144E+00</td>
<td>2.000000E+01</td>
<td>-2.780000E+00</td>
</tr>
<tr>
<td>MT878</td>
<td>878</td>
<td>2</td>
<td>787</td>
<td>8506</td>
<td>313776</td>
<td>3.390300E+00</td>
<td>2.000000E+01</td>
<td>-3.049000E+00</td>
</tr>
<tr>
<td>MT879</td>
<td>879</td>
<td>2</td>
<td>917</td>
<td>9780</td>
<td>403686</td>
<td>5.230500E+00</td>
<td>2.000000E+01</td>
<td>-4.704000E+00</td>
</tr>
<tr>
<td>MT880</td>
<td>880</td>
<td>2</td>
<td>997</td>
<td>10786</td>
<td>473480</td>
<td>6.215645E+00</td>
<td>2.000000E+01</td>
<td>-5.590000E+00</td>
</tr>
<tr>
<td>MT881</td>
<td>881</td>
<td>2</td>
<td>1072</td>
<td>11658</td>
<td>541325</td>
<td>7.094100E+00</td>
<td>2.000000E+01</td>
<td>-6.380000E+00</td>
</tr>
<tr>
<td>MT882</td>
<td>882</td>
<td>2</td>
<td>1142</td>
<td>12463</td>
<td>602404</td>
<td>7.516600E+00</td>
<td>2.000000E+01</td>
<td>-6.760000E+00</td>
</tr>
<tr>
<td>MT883</td>
<td>883</td>
<td>2</td>
<td>1209</td>
<td>13268</td>
<td>662979</td>
<td>8.828700E+00</td>
<td>2.000000E+01</td>
<td>-7.940000E+00</td>
</tr>
<tr>
<td>MT884</td>
<td>884</td>
<td>2</td>
<td>1270</td>
<td>14006</td>
<td>717643</td>
<td>1.254600E+01</td>
<td>2.000000E+01</td>
<td>-1.128300E+01</td>
</tr>
<tr>
<td>MT885</td>
<td>885</td>
<td>2</td>
<td>1313</td>
<td>14476</td>
<td>759400</td>
<td>1.313200E+01</td>
<td>2.000000E+01</td>
<td>-1.181000E+01</td>
</tr>
<tr>
<td>MT886</td>
<td>886</td>
<td>2</td>
<td>1353</td>
<td>14879</td>
<td>794112</td>
<td>2.800000E+00</td>
<td>2.000000E+01</td>
<td>-2.397000E+00</td>
</tr>
<tr>
<td>MT887</td>
<td>887</td>
<td>2</td>
<td>1520</td>
<td>16220</td>
<td>824494</td>
<td>4.447700E+00</td>
<td>2.000000E+01</td>
<td>-4.000000E+00</td>
</tr>
<tr>
<td>MT888</td>
<td>888</td>
<td>2</td>
<td>1606</td>
<td>17293</td>
<td>883630</td>
<td>3.724939E+00</td>
<td>2.000000E+01</td>
<td>-3.350000E+00</td>
</tr>
<tr>
<td>MT889</td>
<td>889</td>
<td>2</td>
<td>1722</td>
<td>18500</td>
<td>929406</td>
<td>1.851800E+00</td>
<td>2.000000E+01</td>
<td>-1.665400E+00</td>
</tr>
<tr>
<td>MT890</td>
<td>890</td>
<td>2</td>
<td>1986</td>
<td>20109</td>
<td>1012511</td>
<td>2.739332E+00</td>
<td>2.000000E+01</td>
<td>-2.463600E+00</td>
</tr>
<tr>
<td>(n,p)</td>
<td>103</td>
<td>0</td>
<td>2160</td>
<td></td>
<td></td>
<td>1.427000E+01</td>
<td>2.000000E+01</td>
<td>-1.283000E+01</td>
</tr>
<tr>
<td>(n,d)</td>
<td>104</td>
<td>0</td>
<td>2194</td>
<td></td>
<td></td>
<td>1.630100E+01</td>
<td>2.000000E+01</td>
<td>-1.466000E+01</td>
</tr>
<tr>
<td>(n,t)</td>
<td>105</td>
<td>0</td>
<td>2222</td>
<td></td>
<td></td>
<td>1.160848E+01</td>
<td>2.000000E+01</td>
<td>-1.044000E+01</td>
</tr>
<tr>
<td>(n,a)</td>
<td>107</td>
<td>0</td>
<td>2270</td>
<td></td>
<td></td>
<td>6.671534E-01</td>
<td>2.000000E+01</td>
<td>-6.000000E-01</td>
</tr>
</tbody>
</table>