Nuclear data needs for MYRRHA and MINERVA

Peter Baeten

SCK•CEN, Blegium
OECD/NEA, June 6th, 2019
Outline

MYRRHA & MINERVA

- Needs for Criticality Safety
- Needs for Shielding
- Needs for Radioactive Source Terms & Waste Management
Construction of an Accelerator-Driven System (ADS) consisting of:

- A 600 MeV, 4 mA proton linear accelerator
- A spallation target/source
- A lead-Bismuth Eutectic (LBE) cooled reactor able to operate in subcritical & critical mode

Key technical objective: An Accelerator Driven System
- Demonstrate the ADS concept at pre-industrial scale
- Can operate in critical and sub-critical modes
- Demonstrate transmutation
- Fast neutron source → multipurpose and flexible irradiation facility

Accelerator

<table>
<thead>
<tr>
<th>Particles</th>
<th>Protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>600 MeV</td>
</tr>
<tr>
<td>Beam current</td>
<td>up to 4 mA</td>
</tr>
</tbody>
</table>

Reactor

<table>
<thead>
<tr>
<th>Power</th>
<th>65 to 100 MW<sub>th</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{\text{eff}})</td>
<td>0.95</td>
</tr>
<tr>
<td>Spectrum</td>
<td>Fast</td>
</tr>
<tr>
<td>Coolant</td>
<td>LBE</td>
</tr>
</tbody>
</table>

Target

- Main reaction: Spallation
- Output: \(2 \cdot 10^{17} \) n/s
- Material: LBE (coolant)
Belgium decided to build a new large research infrastructure MYRRHA to remain at the forefront worldwide in:

- Transmutation (Partitioning & Transmutation) of radioactive waste.
- Nuclear medicine and medical radioisotope production
- Demonstrate ADS technology
- Research in new materials
- Contribute to development of lead fast reactors

September 7, 2018: Belgian government decided to finance (558 M€) design, construction and operation of MYRRHA for the period 2019 – 2038
MYRRHA’s phased implementation strategy

Benefits of phased approach:
• Reducing technical risk
• Spreading investment cost
• First R&D facility available in Mol end of 2024
MYRRHA Phase 1: ongoing

Consists of

- MINERVA (MYRRHA Isotopes productionN coupling the linEar acceleRator to the Versatile proton target fAcity)

 ➢ Build and test the first part of the MYRRHA accelerator, up to 100 MeV. Extreme reliability of accelerator is required:
 - Less than 10 beam trips longer than 3 sec per 3-month operation period,
 - Less than 100 beam trips longer than 0.1 sec per day,
 - Mean Time between Failures MTBF > 250 hrs.

 ➢ Design, build and operate a 100 MeV Proton Target Facility (PTF)
 - Production of radioisotopes - ISOL
 - Fundamental physics experiments
 - Innovative medical isotopes production
 - Structural material irradiation (eg. for fusion applications)

- MYRRHA reactor design and research on-going in parallel

Source: SCK•CEN MYRRHA Project Team
MYRRHA & MINERVA

Needs for Criticality Safety

- Needs for Shielding
- Needs for Radioactive Source Terms & Waste Management
Criticality uncertainties

Increase of confidence by improving the uncertainties is needed for:

- 239Pu: (n,γ) both in resonance and fast energy region, (n,f) fast, χ and \bar{v} fast
- 238U: (n,n') fast, (n,γ) resonance and fast, (n,n) resonance and fast
- 56Fe: (n,γ) resonance and fast
- 235U: \bar{v}, (n,f), (n,γ) resonance and fast
- 209Bi (n,γ) and (n,n') resonance and fast
- 208Pb (n,n) and (n,n') resonance and fast
- 241Pu (n,f) resonance and fast
- 242Pu (n,f) fast
- 240Pu: \bar{v} fast
- 238Pu: (n,f) both resonance and fast

Total $\frac{\delta k_{\text{eff}}}{k_{\text{eff}}} = 0.945\% \sim 1000 \text{ pcm}$

Target accuracy: $\frac{\delta k_{\text{eff}}}{k_{\text{eff}}} \sim 300 \text{ pcm} (\beta_{\text{eff}})$

239Pu(n,f) reaction rate can be measured in VENUS-F with the spectrum close to MYRRHA one (see further)
Needs in Plutonium data

R. Capote (IAEA) @ ND2019, Beijing, 24th May 2019: Importance of reliable Pu evaluation

OUTLINE
- Background: ADS and data needs
- New experimental results: PFNS
- Integral feedback; IDA trends
- Update of resonance parameters & TNC
- Evaluation in the fast neutron range
- New modelling developments
- Integral and quasi-differential data
- Summary

MYRRHA: hybrid Research reactor
- MOX fuel (7-30% 239Pu), Pb-Bi (LBE) coolant

Source: R. Capote (IAEA), Presentation given at ND2019, Beijing, 24th May 2019, L450
Challenges: Pu-241 example

Recent experimental data

+old experimental data

Only recent experimental data considered: libraries overestimate

+old data: consistency of libraries with many data sets
Integral validation: VENUS-F

VENUS-F zero power reactor coupled to GENEPI -3C deuteron accelerator (14 MeV neutrons from D+T)

30% U metallic fuel + Pb “coolant” (solid Pb, alternatively Bi)

Pb reflector

SS

Neutron spectrum

Neutron energy [MeV]

total core
fuel
coolant

Reaction rate in fuel

Neutron energy [MeV]

235U(n,f)
238U(n,f)
235U(n,g)
238U(n,g)
Criticality C/E

9 core configurations studied within EU Projects FREYA, MYRTE, MIRACL, MIPSA in 2011-2019

Besides criticality C/E, we have:
- Kinetic parameters
- CR curve
- Spectral indices
- Axial and radial traverses
- Pb-Bi void
- Fuel Doppler

Extensive database for ND validation!

<table>
<thead>
<tr>
<th>Core</th>
<th>#FAs</th>
<th>FA composition</th>
<th>Reflector</th>
<th>In-Pile Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR0</td>
<td>97</td>
<td>9 U+16 Pb</td>
<td>Pb</td>
<td>-</td>
</tr>
<tr>
<td>CC5</td>
<td>41</td>
<td>13 U+8 Pb+4 Al₂O₃</td>
<td>Pb</td>
<td>-</td>
</tr>
<tr>
<td>CC6</td>
<td>41</td>
<td>13 U+8 Pb+4 Al₂O₃</td>
<td>Pb</td>
<td>-</td>
</tr>
<tr>
<td>CC7</td>
<td>41</td>
<td>13 U+8 Pb+4 Al₂O₃</td>
<td>Pb+C</td>
<td>-</td>
</tr>
<tr>
<td>CC8</td>
<td>47</td>
<td>13 U+8 Pb+4 Al₂O₃</td>
<td>Pb+C</td>
<td>thermal spectrum</td>
</tr>
<tr>
<td>CC9</td>
<td>41</td>
<td>13 U+8 Bi+4 Al₂O₃</td>
<td>Pb</td>
<td>-</td>
</tr>
<tr>
<td>CC10</td>
<td>41</td>
<td>13 U+Pb+8 Bi+4 Al₂O₃</td>
<td>Pb+C</td>
<td>-</td>
</tr>
<tr>
<td>CC10b</td>
<td>47</td>
<td>13 U+Pb+8 Bi+4 Al₂O₃</td>
<td>Pb+C</td>
<td>thermal spectrum</td>
</tr>
<tr>
<td>CC11</td>
<td>50</td>
<td>13 U+Pb+8 Bi+4 Al₂O₃</td>
<td>Pb+C</td>
<td>thermal and fast spectrum</td>
</tr>
</tbody>
</table>

Sensitivity analysis shows large contribution of 208Pb elastic scattering and average scattering angle cosine
These data for 208Pb are very close to each other in all the libraries

JEFF needs improvement

JENDL gives best agreement

Source: A. Kochetkov, 2019
• MYRRHA & MINERVA
• Needs for Criticality Safety

Needs for Shielding
• Needs for Radioactive Source Terms & Waste Management
Beam line at the Centre des Ressources du Cyclotron in Université Catholique de Louvain

IS – ion source
LEBT – low energy beam transport, up to 30 keV
RFQ – radio frequency quadrupole, up to 1.5 MeV
MEBT – medium energy beam transport and CH – cross-bar H-type cavities, up 5.9 MeV
5.9 MeV beam dump shielding

No data on neutron production in JEFF between 5.8 (threshold) and 6 MeV

Source: JEFFDOC-1956, 2018

Impact on doses behind shielding

Concrete block 1
Concrete block 2
Air

Shield thickness (m)

H*(10) [μSv/h]
MINERVA: Shielding of 100 MeV accelerator + target for fusion materials irradiation

Shielding of ISOL targets:
Huge discrepancies between libraries/experimental data, especially for protons + light nuclei

Material irradiation (fusion targets):
Huge discrepancies both in neutron spectra and total neutron yield from p+W

Neutron production cross section, \(b \)
Energy, MeV
Thresholds:
\(^{12}\text{C}(p,x)^{1}n = 19.642 \text{ MeV} \)
\(^{13}\text{C}(p,x)^{1}n = 3.236 \text{ MeV} \)

Neutron fluence, \(n/cm^2/MeV/s.p. \)
Neutron energy, MeV
Neutron spectra from \(p(100 \text{ MeV}) + W \)

Source: JEFFDOC-1956, 2108
Outline

- MYRRHA & MINERVA
- Needs for Criticality Safety
- Needs for Shielding

Needs for Radioactive Source Terms & Waste Management
Polonium-210 in MYRRHA

- Produced by neutron capture: $^209_{83}Bi(\text{n},\gamma)^{210}_{83}Bi \rightarrow ^{210}_{84}Po \rightarrow ^{206}_{82}Pb$
- Assuming no release, during 1 irradiation cycle 5.5×10^4 TBq of ^{210}Po is produced from ~7600 ton of LBE
- Decay heat: 48 kW of LBE pool
- Normal operation: partially migrates in cover gas
- Failures or leaks: evaporation in contact with ambient air, formation of highly volatile species in presence of moistures and/or hydrogen

Accurate prediction of ^{210}Po production by neutronic codes is needed

- Grey shadow: consideration of neutron capture to ground state only = maximum possible ^{210}Po production
- Available covariance data have been propagated for some libraries
- The uncertainties do not cover differences between libraries
A new experimental programme to measure BR and total neutron capture was launched by JRC and SCK•CEN

First measurements have been performed in 2019 at J-PARC/ANNRI (Japan)

They will be complemented by measurements at GELINA (JRC)
Conclusions

- To design and license MYRRHA and its Phase I MINERVA, reliable nuclear data with covariances are needed to provide reliable central values and uncertainties for safety related parameters: criticality, reactivity effects, shielding, waste management, radioactive source terms, etc.

- For criticality safety, we need to reduce the k_{eff} uncertainty from ~1000 to 300 pcm (< 1 β_{eff})

- For shielding design for MINERVA, reliable proton-induced data, especially for light nuclides, are required

- For waste management, one of key points is accurate prediction of Po-210 production: an experimental programme has been launched with ultimate goal to produce new JEFF evaluation for Bi-210
A jump in the future for innovation in Belgium